精英家教网 > 高中数学 > 题目详情
14.函数y=|sinx|的周期为π.

分析 根据函数y=|Asin(ωx+φ)|的周期为$\frac{1}{2}•\frac{2π}{ω}$,得出结论.

解答 解:∵函数y=|Asin(ωx+φ)|的周期为$\frac{1}{2}•\frac{2π}{ω}$,
∴函数y=|sinx|的周期为$\frac{1}{2}•2π$=π,
故答案为:π.

点评 本题主要考查正弦函数的周期性,利用了函数y=|Asin(ωx+φ)|的周期为$\frac{1}{2}•\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ.
(Ⅰ)求曲线C1的极坐标方程及曲线C2的直角坐标方程;
(Ⅱ)已知曲线C1,C2交于O,A两点,过O点且垂直于OA的直线与曲线C1,C2交于M,N两点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给定R上的函数f(x),(  )
A.存在R上函数g(x),使得f(g(x))=xB.存在R上函数g(x),使得g(f(x))=x
C.存在R上函数g(x),使得f(g(x))=g(x)D.存在R上函数g(x),使得f(g(x))=g(f(x))

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=sin(ωx+φ)(ω>0)的图象如图所示,则f(4)=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x∈R,log5x≥0,则(  )
A.¬p:?x∈R,log5x<0B.¬p:?x∈R,log5x≤0C.¬p:?x∈R,log5x≤0D.¬p:?x∈R,log5x<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合M={x|x<1},N={x|x(x-1)<0},则M∪N=(  )
A.B.{x|0<x<1}C.{x|x<0}D.{x|x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点分别为A1、A2,上、下顶点分别为B2、B1,O为坐标原点,四边形A1B1A2B2的面积为4,且该四边形内切圆的方程为x2+y2=$\frac{4}{5}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若M、N是椭圆C上的两个不同的动点,直线OM、ON的斜率之积等于-$\frac{1}{4}$,试探求△OMN的面积是否为定值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA=BC=$\frac{1}{2}$AD.
(1)求证:CD⊥平面PAC;
(2)在棱PD上是否存在一点E,使CE∥平面PAB?若存在,指出E的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C的对边分别为a,b,c,角A,B,C成等差数列.
(Ⅰ)求cosB的值; 
(Ⅱ)边b2=ac,求sinAsinC的值.

查看答案和解析>>

同步练习册答案