4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=sin¦È£®
£¨¢ñ£©ÇóÇúÏßC1µÄ¼«×ø±ê·½³Ì¼°ÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÒÑÖªÇúÏßC1£¬C2½»ÓÚO£¬AÁ½µã£¬¹ýOµãÇÒ´¹Ö±ÓÚOAµÄÖ±ÏßÓëÇúÏßC1£¬C2½»ÓÚM£¬NÁ½µã£¬Çó|MN|µÄÖµ£®

·ÖÎö £¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃÆÕͨ·½³Ì£®ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÇúÏßC1µÄ¼«×ø±ê·½³Ì£®ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=sin¦È£¬¿ÉµÃ£º¦Ñ2=¦Ñsin¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£®
£¨II£©ÁªÁ¢$\left\{\begin{array}{l}{¦Ñ=2cos¦È}\\{¦Ñ=sin¦È}\end{array}\right.$£¬¿ÉµÃtan¦È=2£¬ÉèµãAµÄ¼«½ÇΪ¦È£¬Ôòtan¦È=2£¬¿ÉµÃsin¦È=$\frac{2\sqrt{5}}{5}$£¬cos¦È=$\frac{\sqrt{5}}{5}$£¬ÔòM$£¨{¦Ñ}_{1}£¬¦È-\frac{¦Ð}{2}£©$£¬´úÈë¦Ñ=2cos¦È£¬¿ÉµÃ£º¦Ñ1£®N$£¨{¦Ñ}_{2}£¬¦È+\frac{¦Ð}{2}£©$£¬´úÈë¦Ñ=sin¦È£¬¿ÉµÃ£º¦Ñ2£®¿ÉµÃ£º|MN|=¦Ñ1+¦Ñ2£®

½â´ð ½â£º£¨I£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Õ}\\{y=sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬
ÀûÓÃÆ½·½¹ØÏµ¿ÉµÃ£º£¨x-1£©2+y2=1£¬»¯Îªx2+y2-2x=0£®
ÀûÓû¥»¯¹«Ê½¿ÉµÃ£ºÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-2¦Ñcos¦È=0£¬¼´¦Ñ=2cos¦È£®
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=sin¦È£¬¿ÉµÃ£º¦Ñ2=¦Ñsin¦È£¬¿ÉµÃ£ºÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=y£®
£¨II£©ÁªÁ¢$\left\{\begin{array}{l}{¦Ñ=2cos¦È}\\{¦Ñ=sin¦È}\end{array}\right.$£¬¿ÉµÃtan¦È=2£¬ÉèµãAµÄ¼«½ÇΪ¦È£¬Ôòtan¦È=2£¬¿ÉµÃsin¦È=$\frac{2\sqrt{5}}{5}$£¬cos¦È=$\frac{\sqrt{5}}{5}$£¬
ÔòM$£¨{¦Ñ}_{1}£¬¦È-\frac{¦Ð}{2}£©$£¬´úÈë¦Ñ=2cos¦È£¬¿ÉµÃ£º¦Ñ1=2cos$£¨¦È-\frac{¦Ð}{2}£©$=2sin¦È=$\frac{4\sqrt{5}}{5}$£®
N$£¨{¦Ñ}_{2}£¬¦È+\frac{¦Ð}{2}£©$£¬´úÈë¦Ñ=sin¦È£¬¿ÉµÃ£º¦Ñ2=sin$£¨¦È+\frac{¦Ð}{2}£©$=cos¦È=$\frac{\sqrt{5}}{5}$£®
¿ÉµÃ£º|MN|=¦Ñ1+¦Ñ2=$\sqrt{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯¡¢Ô²ÏཻÏÒ³¤ÎÊÌ⣬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow a=£¨1£¬2£©$£¬$\overrightarrow b=£¨m£¬-4£©$£¬ÇÒ$\overrightarrow a¡Î\overrightarrow b$£¬Ôò$\overrightarrow a•\overrightarrow b$=£¨¡¡¡¡£©
A£®4B£®-6C£®-10D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÇúÏßCµÄ·½³ÌΪ£¨x-2£©2+y2=1£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®
£¨1£©ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»
£¨2£©ÈôPΪÇúÏßM£º¦Ñ=-2cos¦ÈÉÏÈÎÒâÒ»µã£¬QΪÇúÏßCÉÏÈÎÒâÒ»µã£¬Çó|PQ|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ò»¹°ÇŵÄÐÎ״ΪÅ×ÎïÏߣ¬¸ÃÅ×ÎïÏß¹°µÄ¸ßΪh£¬¿íΪb£¬´ËÅ×ÎïÏß¹°µÄÃæ»ýΪS£¬Èôb=3h£¬ÔòSµÈÓÚ£¨¡¡¡¡£©
A£®h2B£®$\frac{3}{2}$h2C£®$\sqrt{3}$h2D£®2h2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=|3x-a|+|3x-6|£¬g£¨x£©=|x-2|+1£®
£¨¢ñ£©a=1ʱ£¬½â²»µÈʽf£¨x£©¡Ý8£»
£¨¢ò£©Èô¶ÔÈÎÒâx1¡ÊR¶¼ÓÐx2¡ÊR£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}Âú×ãan+1=$\frac{a_n^2+9}{{2{a_n}}}£¬{a_{n+1}}£¼{a_n}$£®
£¨I£©Çóa1µÄȡֵ·¶Î§£»
£¨II£©ÊÇ·ñ´æÔÚm¡ÊN*£¬Ê¹µÃ£¨am-3£©£¨am+2-3£©=£¨am+1-3£©2£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÁâÐÎABCDÈçͼ£¨1£©Ëùʾ£¬ÆäÖСÏACD=60¡ã£¬AB=2£¬ACÓëBDÏཻÓÚµãO£¬ÏÖÑØAC½øÐз­ÕÛ£¬Ê¹µÃÆ½ÃæACD¡ÍÆ½ÃæABC£¬È¡µãE£¬Á¬½ÓAE£¬BE£¬CE£¬DE£¬Ê¹µÃÏß¶ÎBEÔÙÆ½ÃæABCÄÚµÄͶӰÂäÔÚÏß¶ÎOBÉÏ£¬µÃµ½µÄͼÐÎÈçͼ£¨2£©Ëùʾ£¬ÆäÖСÏOBE=60¡ã£¬BE=2£®
£¨¢ñ£©Ö¤Ã÷£ºDE¡ÍAC£»
£¨¢ò£©Çó¶þÃæ½ÇA-BE-CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªÖ±Ïßl¹ýµã£¨1£¬2£©£¬ÇÒÔÚx£¬yÖáÉϵĽؾà·Ö±ðΪa£¬b£¬Èôa=2b£¬ÔòÖ±ÏßlµÄ·½³ÌΪ2x-y=0»òx+2y-5=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®º¯Êýy=|sinx|µÄÖÜÆÚΪ¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸