分析 (Ⅰ)依题意得DO⊥AC.,又平面ACD⊥平面ABC,得DO⊥面ABC.
作EF⊥面ABC于F,可得F落在BO上,可得四边形DEFO是矩形,即证得 DE⊥AC
(Ⅱ)以O为原点,OA,OB,OD所在直线分别为x、y、z轴建立空间直角坐标系,
则A(1,0,0),B(0,$\sqrt{3}$,0),C(-1,0,0),E(0,$\sqrt{3}-1,\sqrt{3}$).利用向量求解.
解答 解:(Ⅰ)证明:依题意得△ABC,△ACD都是边长为2的等边三角形,∴DO⊥AC.
又平面ACD⊥平面ABC,平面ACD∩平面ABC=AC,DO?面ACD,∴DO⊥面ABC.
作EF⊥面ABC于F,可得F落在BO上,且∠EBF=∠OBE=60°.
在Rt△BEF中,EF=BE$•sin∠EBF=\sqrt{3}$,
在Rt△DOC中,DO=DC$•sin∠DCO=\sqrt{3}$,
∵DO⊥面ABC,EF⊥面ABC,所以DO∥EF,又DO=EF,∴四边形DEFO是矩形,
∵OF⊥AC,∴DE⊥AC;![]()
(Ⅱ)以O为原点,OA,OB,OD所在直线分别为x、y、z轴建立空间直角坐标系,
则A(1,0,0),B(0,$\sqrt{3}$,0),C(-1,0,0),E(0,$\sqrt{3}-1,\sqrt{3}$).
故$\overrightarrow{BE}=(0,-1,\sqrt{3}$),$\overrightarrow{BC}=(-1,-\sqrt{3},0)$.
设平面BCE的法向量为$\overrightarrow{n}=(x,y,z)$,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BE}=-y+\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{BC}=-x-\sqrt{3}y=0}\end{array}\right.$,可取$\overrightarrow{n}=(-3,\sqrt{3},1)$
设平面ABE的法向量为$\overrightarrow{m}=(a,b,c)$,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{EB}=-b+\sqrt{3}c=0}\\{\overrightarrow{m}•\overrightarrow{AB}=-a+\sqrt{3}b=0}\end{array}\right.$,可取$\overrightarrow{m}=(3,\sqrt{3},1)$
cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=-$\frac{5}{13}$,
∴二面角A-BE-C的余弦值为$\frac{5}{13}$.
点评 本题考查了空间面面垂直的性质,线线垂直的判定,向量法求二面角,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {x|x>-2} | B. | {x|x>2} | C. | {x|0<x<2} | D. | {x|-2<x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(4.5)<f(7)<f(6.5) | B. | f(7)<f(4.5)<f(6.5) | C. | f(7)<f(6.5)<f(4.5) | D. | f(4.5)<f(6.5)<f(7) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在R上函数g(x),使得f(g(x))=x | B. | 存在R上函数g(x),使得g(f(x))=x | ||
| C. | 存在R上函数g(x),使得f(g(x))=g(x) | D. | 存在R上函数g(x),使得f(g(x))=g(f(x)) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com