精英家教网 > 高中数学 > 题目详情
8.cos15°sin30°cos75°sin150°的值等于$\frac{1}{16}$.

分析 利用诱导公式、二倍角公式,化简所给的式子,可得结果.

解答 解:cos15°sin30°cos75°sin150°=cos15°sin30°sin15°sin30°=cos15°•$\frac{1}{2}$•sin15°•$\frac{1}{2}$=$\frac{1}{4}$•$\frac{1}{2}$sin30°=$\frac{1}{16}$,
故答案为:$\frac{1}{16}$.

点评 本题主要考查诱导公式、二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x(a∈R+)在区间[2,4]上为单调递增函数,则$\frac{25}{a}$+a的取值范围为(  )
A.[10,+∞)B.[$\frac{29}{2}$,+∞)C.[$\frac{25}{2}$,+∞)D.[$\frac{41}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|3x-a|+|3x-6|,g(x)=|x-2|+1.
(Ⅰ)a=1时,解不等式f(x)≥8;
(Ⅱ)若对任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知菱形ABCD如图(1)所示,其中∠ACD=60°,AB=2,AC与BD相交于点O,现沿AC进行翻折,使得平面ACD⊥平面ABC,取点E,连接AE,BE,CE,DE,使得线段BE再平面ABC内的投影落在线段OB上,得到的图形如图(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)证明:DE⊥AC;
(Ⅱ)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,a1=4,an+1=$\sqrt{\frac{6+{a}_{n}}{2}}$,n∈N*,Sn为{an}的前n项和.
(Ⅰ)求证:n∈N*时,an>an+1
(Ⅱ)求证:n∈N*时,2≤Sn-2n<$\frac{16}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l过点(1,2),且在x,y轴上的截距分别为a,b,若a=2b,则直线l的方程为2x-y=0或x+2y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC的三个顶点为A(-4,0),B(2,4),C(-2,6).
(1)已知直线l1过B、C两点,求直线l1的方程;
(2)已知直线l2经过A点并且经过BC中点D,求直线l2的方程;
(3)已知直线l3经过C点,且倾斜角是l2倾斜角的2倍,求直线l3的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}为等比数列,an>0,a1=2,2a2+a3=30.
(Ⅰ)求an
(Ⅱ)若数列{bn}满足,bn+1=bn+an,b1=a2,求bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆G:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的短轴端点到右焦点F2(1,0)的距离为2,平行四边形ABCD的四个顶点都在椭圆G上.
(Ⅰ)求椭圆G的方程;
(Ⅱ)若直线AB和AD的斜率存在且分别为k1,k2,证明:k1•k2为定值;
(Ⅲ)当直线AB和DC分别过椭圆G的左焦点F1和右焦点F2时,求四边形ABCD面积的最大值.

查看答案和解析>>

同步练习册答案