| A. | {x|x>-2} | B. | {x|x>2} | C. | {x|0<x<2} | D. | {x|-2<x<2} |
分析 根据条件先判断函数的奇偶性和单调性,结合函数奇偶性和单调性的关系将不等式进行等价转化进行求解即可.
解答 解:∵f(x)=$\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x),
∴f(-x)=$\frac{{4}^{-x}-{4}^{x}}{3}$+log3($\sqrt{{x}^{2}+1}$-x)=-$\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x)-1=-($\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x))=-f(x),
即函数f(x)是奇函数,
且函数f(x)在R上是增函数,
则不等式f(2x-6)+f(x)>0等价为f(2x-6)>-f(x)=f(-x),
即2x-6>-x,即3x>6,得x>2,
即不等式的解集为{x|x>2},
故选:B.
点评 本题主要考查不等式的求解,根据条件判断函数的奇偶性以及单调性是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2016}{2017}$ | B. | $\frac{4032}{2017}$ | C. | $\frac{2017}{2018}$ | D. | $\frac{4034}{2018}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | -6 | C. | -10 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移$\frac{3π}{20}$个单位 | B. | 向右平移$\frac{3π}{20}$个单位 | ||
| C. | 向左平移$\frac{3π}{4}$个单位 | D. | 向右平移$\frac{3π}{4}$个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [10,+∞) | B. | [$\frac{29}{2}$,+∞) | C. | [$\frac{25}{2}$,+∞) | D. | [$\frac{41}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com