精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=$\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x),那么关于x的不等式f(2x-6)+f(x)>0的解集为(  )
A.{x|x>-2}B.{x|x>2}C.{x|0<x<2}D.{x|-2<x<2}

分析 根据条件先判断函数的奇偶性和单调性,结合函数奇偶性和单调性的关系将不等式进行等价转化进行求解即可.

解答 解:∵f(x)=$\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x),
∴f(-x)=$\frac{{4}^{-x}-{4}^{x}}{3}$+log3($\sqrt{{x}^{2}+1}$-x)=-$\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x)-1=-($\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x))=-f(x),
即函数f(x)是奇函数,
且函数f(x)在R上是增函数,
则不等式f(2x-6)+f(x)>0等价为f(2x-6)>-f(x)=f(-x),
即2x-6>-x,即3x>6,得x>2,
即不等式的解集为{x|x>2},
故选:B.

点评 本题主要考查不等式的求解,根据条件判断函数的奇偶性以及单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.数列{an}满足a1=1,且对于任意的n∈N*都有an+1=an+a1+n,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2017}}}}$等于(  )
A.$\frac{2016}{2017}$B.$\frac{4032}{2017}$C.$\frac{2017}{2018}$D.$\frac{4034}{2018}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.记不等式组$\left\{\begin{array}{l}4x+3y≥10\\ x≤3\\ y≤4\end{array}\right.$表示的平面区域为D,过区域D中任意一点P作圆x2+y2=1的两条切线,切点分别为A,B,则cos∠PAB的最大值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,-4)$,且$\overrightarrow a∥\overrightarrow b$,则$\overrightarrow a•\overrightarrow b$=(  )
A.4B.-6C.-10D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x+1|-|x|+a,
(1)若a=-1,求不等式f(x)≥0的解集;
(2)若方程f(x)=2x有三个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.要得到函数y=sin(5x-$\frac{π}{4}$)的图象,只需将函数y=cos5x的图象(  )
A.向左平移$\frac{3π}{20}$个单位B.向右平移$\frac{3π}{20}$个单位
C.向左平移$\frac{3π}{4}$个单位D.向右平移$\frac{3π}{4}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x(a∈R+)在区间[2,4]上为单调递增函数,则$\frac{25}{a}$+a的取值范围为(  )
A.[10,+∞)B.[$\frac{29}{2}$,+∞)C.[$\frac{25}{2}$,+∞)D.[$\frac{41}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系中,曲线C的方程为(x-2)2+y2=1,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若P为曲线M:ρ=-2cosθ上任意一点,Q为曲线C上任意一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知菱形ABCD如图(1)所示,其中∠ACD=60°,AB=2,AC与BD相交于点O,现沿AC进行翻折,使得平面ACD⊥平面ABC,取点E,连接AE,BE,CE,DE,使得线段BE再平面ABC内的投影落在线段OB上,得到的图形如图(2)所示,其中∠OBE=60°,BE=2.
(Ⅰ)证明:DE⊥AC;
(Ⅱ)求二面角A-BE-C的余弦值.

查看答案和解析>>

同步练习册答案