精英家教网 > 高中数学 > 题目详情
11.要得到函数y=sin(5x-$\frac{π}{4}$)的图象,只需将函数y=cos5x的图象(  )
A.向左平移$\frac{3π}{20}$个单位B.向右平移$\frac{3π}{20}$个单位
C.向左平移$\frac{3π}{4}$个单位D.向右平移$\frac{3π}{4}$个单位

分析 利用诱导公式、函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:∵函数y=cos5x=sin(5x+$\frac{π}{2}$)=sin5(x+$\frac{π}{10}$),y=sin(5x-$\frac{π}{4}$)=sin5(x-$\frac{π}{20}$),$\frac{π}{10}$+$\frac{π}{20}$=$\frac{3π}{20}$,
故把函数y=cos5x的图象的图象向右平移$\frac{3π}{20}$个单位,
可得函数y=sin(5x-5•$\frac{3π}{20}$+$\frac{π}{2}$)=sin(5x-$\frac{π}{4}$)的图象,
故选:B.

点评 本题主要考查诱导公式、函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|x+a|(a∈R).
(1)若a=1,解不等式f(x)+|x-3|≤2x;
(2)若不等式f(x)+|x-1|≥3在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知文具盒中有5支铅笔,其中3支红色,2支黄色.现从这5只铅笔中任取2支,这两支铅笔颜色恰好不同的概率为(  )
A.0.4B.0.6C.0.8D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,若m=8,则输出的结果是(  )
A.2B.$\frac{7}{3}$C.3D.$\frac{13}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\frac{{4}^{x}-{4}^{-x}}{3}$+log3($\sqrt{{x}^{2}+1}$+x),那么关于x的不等式f(2x-6)+f(x)>0的解集为(  )
A.{x|x>-2}B.{x|x>2}C.{x|0<x<2}D.{x|-2<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知m、n是两条不重合的直线,α、β是两个不重合的平面,下列命题中正确的是(  )
A.若m∥n,m∥α,则n∥αB.若m、n?α,m∥β,n∥β,则α∥β
C.若m⊥α,n∥α,则m⊥nD.若m⊥α,α⊥β,m∥n,则n∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在长方体ABCD-A1B1C1D1的十二条棱中,与面对角线AC垂直且异面的棱的条数是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a=$\sqrt{7}$,b=2,A=60°,则c=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,已知函数f(x)=max{|2x-1|,ax2+b},其中a<0,b∈R,若f(0)=b,则实数b的范围为[1,+∞),若f(x)的最小值为1,则a+b=1.

查看答案和解析>>

同步练习册答案