精英家教网 > 高中数学 > 题目详情
16.已知x,y∈R,则“x>0,y<0”是“xy<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 根据充分必要条件的定义以及不等式的性质判断即可.

解答 解:由xy<9,解得:x>0,y<0或x<0,y>0,
故“x>0,y<0”是“xy<0”的充分不必要条件,
故选:A.

点评 本题考查了充分必要条件,考查不等式的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=(x+a)ex,其中a∈R.
(1)若曲线y=f(x)在点A(0,a)处的切线l与直线y=|2a-2|x平行,求l的方程;
(2)若?a∈[1,2],函数f(x)在(b-ea,2)上为增函数,求证:e2-3≤b<ea+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过点P($\frac{1}{2}$,1)的直线l与圆C:(x-1)2+y2=4交于A,B两点,当∠ACB最小时,三角形ACB的面积为$\frac{\sqrt{55}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=30.4,b=log30.4,c=0.43,则a,b,c的大小关系为(  )
A.a>c>bB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,角A,B,C所对的边分a,b,c,c2sinAcosA+a2sinCcosC=4sinB,$cosB=\frac{\sqrt{7}}{4}$,D是AC上一点,且${S}_{△BCD}=\frac{2}{3}$,则$\frac{AD}{AC}$=$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+1≥0}\\{x+2y-2≥0}\\{y≥0}\end{array}\right.$,则z=3x+2y+1的最小值为(  )
A.2B.3C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD(如图所示,其中O为圆心,C,D在半圆上),设∠BOC=θ,直四棱柱木梁的体积为V(单位:m3),侧面积为S(单位:m2).
(Ⅰ)分别求V与S关于θ的函数表达式;
(Ⅱ)求侧面积S的最大值;
(Ⅲ)求θ的值,使体积V最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x-2y+2≤0\\ y≤2\end{array}\right.$,则z=2x-3y的最小值为(  )
A.-6B.-4C.-3D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x+y≥-1}\\{x-y≤-1}\\{2x-3y≥-6}\end{array}\right.$
(1)求目标函数z=2x-y的取值范围;
(2)求目标函数z=x2+y2的最大值.

查看答案和解析>>

同步练习册答案