精英家教网 > 高中数学 > 题目详情
5.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x-2y+2≤0\\ y≤2\end{array}\right.$,则z=2x-3y的最小值为(  )
A.-6B.-4C.-3D.-2

分析 首先画出可行域,利用目标函数的几何意义求最小值.

解答 解:由约束条件得到可行域如图:z=2x-3y变形为y=$\frac{2}{3}$x-$\frac{z}{3}$,当此直线经过图中B(1,2)时,在y轴的截距最大,z最小,所以z的最小值为2×1-3×2=-4;
故选:B.

点评 本题考查了简单线性规划问题;正确画出可行域,利用目标函数的几何意义求最值是常规方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知实数a>0,集合$A=\left\{{x\left|{\frac{x+1}{x-a}<0}\right.}\right\}$,集合B={x||2x-1|>5}.
(1)求集合A、B;
(2)若A∩B≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x,y∈R,则“x>0,y<0”是“xy<0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程lgx+x-3=0一定有解的区间是(  )
A.(2,3)B.(1,2)C.(0,1)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=3x-$\frac{1}{{{3^{|x|}}}}$.
(1)若f(x)=0,求x的取值集合;
(2)若对于t∈[1,3]时,不等式3tf(2t)+mf(t)≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某校数学兴趣小组在研究本地的城市道路与汽车保有量之间的关系(即某地区道路的总里程数和该地区拥有的汽车数量之间的关系)时,得到了近8年的城市道路总里程x(单位:百公里)和汽车保有量y(单位:百辆)的数据如下表:
数据编号20082009201020112012201320142015
道路里程数x120130140150160170180190
汽车保有量y144154160168176180186190
(Ⅰ)若某年的两个值都不小于170时,我们将该年称为“出行便捷年”.现从这8年中任取5年,求恰有2年为“出行便捷年”的概率(请用分数作答).
(Ⅱ)根据上表数据,用变量y和x的相关系数说明y与x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关关系,请说明理由.
参考公式:相关系数$r=\frac{{\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}\sum_{i=1}^8{{{({y_i}-\overline y)}^2}}}}}$;回归直线的方程是:$\hat y=\hat bx+a$,
其中$\hat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$a=\overline y-\hat b\overline x$,${\hat y_i}$是与xi对应的回归估计值.
参考数据:$\overline x=155$,$\overline y=169.75$,$\sum_{i=1}^8{{{({x_i}-\overline x)}^2}}=4200$,$\sum_{i=1}^8{{{({y_i}-\overline y)}^2}}=1827.5$,$\sum_{i=1}^8{({x_i}-\overline x)({y_i}-\overline y)}=2750$,$\sqrt{4200}≈64.80$,$\sqrt{1827.5}≈42.75$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一抛物线形拱桥,当水面宽4米时,水面离拱顶2米,若水面下降1米,则水面的宽为(  )
A.$\sqrt{6}$米B.2$\sqrt{6}$米C.6米D.8米

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知点P(x,y)在椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$上运动,设$d=\sqrt{{x^2}+{y^2}+4y+4}-\frac{x}{2}$,则d的最小值为(  )
A.$\sqrt{5}-2$B.$2\sqrt{2}-1$C.$\sqrt{5}-1$D.$\sqrt{6}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将函数$y=2sin(2x+\frac{π}{6})$的图象向右平移$\frac{1}{4}$个周期后,所得图象对应的函数为f(x),则函数f(x)的单
调递增区间(  )
A.$[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$B.$[kπ+\frac{5π}{12},kπ+\frac{11π}{12}](k∈Z)$
C.$[kπ-\frac{5π}{24},kπ+\frac{7π}{24}](k∈Z)$D.$[kπ+\frac{7π}{24},kπ+\frac{19π}{24}](k∈Z)$

查看答案和解析>>

同步练习册答案