精英家教网 > 高中数学 > 题目详情
11.已知全集U=R,集合A={x|x<2},B={x|lg(x-1)>0},则A∩(∁uB)=(  )
A.{x|1<x<2}B.{x|1≤x<2}C.{x|x<2}D.{x|x≤1}

分析 lg(x-1)>0,可得x-1>1,可得B,∁RB.再利用集合的运算性质可得:A∩(∁uB).

解答 解:∵lg(x-1)>0,∴x-1>1,解得x>2.
∴B={x|lg(x-1)>0}=(2,+∞),
∴∁RB=(-∞,2].
则A∩(∁uB)=(-∞,2).
故选:C.

点评 本题考查了函数的性质、不等式的解法、集合的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列命题中真命题的个数为(  )
(1)两个有共同起点且相等的向量,其终点可能不同;
(2)若非零向量$\overrightarrow{AB}$与$\overrightarrow{CD}$是共线,则A,B,C,D四点共线;
(3)若四边形ABCD是平行四边形,则必有$\overrightarrow{AB}$=$\overrightarrow{CD}$;
(4)$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow a$与$\overrightarrow b$的方向相同或相反.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如果复数z=(m2+m-1)+(4m2-8m+3)i(m∈R)对应的点在第一象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(sinx,-1),向量$\overrightarrow{b}$=(sin(x-$\frac{π}{6}$),$\frac{\sqrt{3}}{2}$).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求tanx的值;
(2)设函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$,求f(x)在区间[-$\frac{π}{3}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知lga和lgb分别是x2+x-3=0的两个根,则ab=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的通项公式为${a_n}=n+cos\frac{nπ}{2}$,Sn为其前n项和,则S100=5050.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“xy=0”是“y=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线1与双曲线C:x2-y2=2的两条渐近线分别交于A、B两点,若AB的中点在该双曲线上,O为坐标原点,则△AOB的面积为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}的前n项和Sn=2an-a1,且a1+4是a2,a3的等差中项.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{n}{a_n}}\right\}$的前n项和Tn,求证:$\frac{1}{2}≤{T_n}<2$.

查看答案和解析>>

同步练习册答案