精英家教网 > 高中数学 > 题目详情
10.设数列{an}的前n项和Sn=2an-a1,且a1+4是a2,a3的等差中项.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{n}{a_n}}\right\}$的前n项和Tn,求证:$\frac{1}{2}≤{T_n}<2$.

分析 (1)利用an=Sn-Sn-1(n>1)计算可知an=2an-1(n>1),进而可知数列{an}是首项为2、公比为2的等比数列,计算即得结论;
(2)通过(1)得$\frac{n}{a_n}=\frac{n}{2^n}$,进而利用错位相减法计算即得结论.

解答 解:(1)由已知Sn=2an-a1,有an=Sn-Sn-1=2an-2an-1(n>1),
即an=2an-1(n>1).------------------(2分)
从而a2=2a1,a3=4a1
又因为a1+4是a2,a3的等差中项,即2(a1+4)=a2+a3
解得a1=2.----------(3分)
所以数列{an}是首项为2,公比为2的等比数列.
故${a_n}={2^n}$…(4分)
(2)由(1)得$\frac{n}{a_n}=\frac{n}{2^n}$,所以${T_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}$,
$2{T_n}=1+1+\frac{3}{2^2}+…+\frac{n}{{{2^{n-1}}}}$,
两式相减${T_n}=1+\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}=\frac{{1-{{(\frac{1}{2})}^n}}}{{1-\frac{1}{2}}}-\frac{n}{2^n}=2-\frac{n+2}{2^n}$…(8分)
因为$\frac{n+2}{2^n}$-$\frac{n+3}{{{2^{n+1}}}}$=$\frac{n+1}{{{2^{n+1}}}}>0$,所以数列$\left\{{\frac{n+2}{2^n}}\right\}$递减…(10分)
即$0<\frac{n+2}{2^n}≤\frac{3}{2}$,从而$\frac{1}{2}≤{T_n}<2$…(12分)

点评 本题考查数列的通项及前n项和,考查错位相减法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知全集U=R,集合A={x|x<2},B={x|lg(x-1)>0},则A∩(∁uB)=(  )
A.{x|1<x<2}B.{x|1≤x<2}C.{x|x<2}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=a(x-1)(ex-a)(常数a∈R且a≠0)
(Ⅰ)若函数f(x)在(0,f(0))处的切线与直线y=x垂直,求a的值;
(Ⅱ)若对任意x∈[1,+∞)都有f(x)≥x2-x,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.复数z=3-2i的模为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,四边形ABCD是菱形,并且PA=3,AB=2,∠ABC=60°,点Q为BC中点.
(1)证明:PD⊥AQ;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知正项数列{an}的前n项的和是Sn,且任意n∈N+,都有$2{S_n}=a_n^2+{a_n}$.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^n}{a_n}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数$z=\frac{3+i}{1-i}$,其中i为虚数单位,则复数z的共轭复数$\overline z$所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一条渐近线方程为y=2x,则C的离心率是(  )
A.$\sqrt{5}$B.$\sqrt{2}$C.2D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知实数x,y满足ax<ay<az(0<a<1),且x+y+z=0,有下列不等式:①ln(x2+1)>ln(y2+1);②x|y|>z|y|;③y3>z3;④xy>xz.其中恒成立的是(  )
A.②③④B.③④C.①③④D.①②③

查看答案和解析>>

同步练习册答案