精英家教网 > 高中数学 > 题目详情
18.复数z=3-2i的模为$\sqrt{13}$.

分析 直接利用复数模的求法,求解即可.

解答 解:复数z=3-2i的模为:|3-2i|=$\sqrt{{3}^{2}+(-2)^{2}}$=$\sqrt{13}$.
故答案为:$\sqrt{13}$.

点评 本题考查复数的模的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(sinx,-1),向量$\overrightarrow{b}$=(sin(x-$\frac{π}{6}$),$\frac{\sqrt{3}}{2}$).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求tanx的值;
(2)设函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$,求f(x)在区间[-$\frac{π}{3}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线1与双曲线C:x2-y2=2的两条渐近线分别交于A、B两点,若AB的中点在该双曲线上,O为坐标原点,则△AOB的面积为(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知正数列{an}的前n项和Sn满足$4{S_n}=a_n^2+2{a_n}+1$.
( I)求数列{an}的通项公式;
(Ⅱ)符号[x]表示不超过实数x的最大整数,如[log23]=1,[log25]=2.记${b_n}=[{log_2}\frac{{{a_n}+3}}{2}]$,求数列$\{{2^n}•{b_{2^n}}\}$的前n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i是虚数单位,则i(1-i)2=(  )
A.2-2iB.2+2iC.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别是a,b,c,已知3cosAcosC+2=3sinAsinC+2cos2B
(Ⅰ)求角B的大小
(Ⅱ)若a+c=1,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设数列{an}的前n项和Sn=2an-a1,且a1+4是a2,a3的等差中项.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{n}{a_n}}\right\}$的前n项和Tn,求证:$\frac{1}{2}≤{T_n}<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知命题p:x2-3x-4≠0,q:x∈N*,命题“p且q”与“?q”都是假命题,则x的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点P(0,2)和圆C:x2+y2-8x+11=0.
(1)求过点P,点C和原点三点圆的方程;
(2)求以点P为圆心且与圆C外切的圆的方程.

查看答案和解析>>

同步练习册答案