精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为:为参数).

(1)求曲线的直角坐标方程与曲线的普通方程;

(2)若用代换曲线的普通方程中的得到曲线的方程,若分别是曲线和曲线上的动点,求的最小值.

【答案】见解析

【解析】(1的极坐标方程是,整理得的直角坐标方程为.……3

曲线,故的普通坐标方程为……5分

(2)用代换曲线的普通方程中的得到曲线的方程,则曲线的参数方程为:,则点到曲线的距离为

时,有最小值,所以的最小值为.……10

【命题意图】本题主要考查极坐标系与参数方程的相关知识,涉及极坐标方程与直角坐标方程的互化、数方程与普通方程的互化等基础知识,意在考查转化与化归能力、基本运算能力,方程思想与数形结合思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数在其定义域内有两个不同的极值点.

(1)求的取值范围.

(2)设的两个极值点为,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知,用分析法证明:

(2)已知 ,用反证法证明: 都大于零.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sna11Sn2an1,则Sn( )

A. 2n1 B. n1 C. n1 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列{an}满足log2a1+log2a2+…+log2a2009=2009,则log2(a1+a2009)的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c且acosC﹣ =b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某运动员每次投篮命中的概率都为50%,现采用随机模拟的方法估计该运动员四次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,2,3,4表示命中,5,6,7,8,9表示不命中;再以每四个随机数为一组,代表四次投篮的结果.经随机模拟产生了20组随机数: 9075 9660 1918 9257 2716 9325 8121 4589 5690 6832
4315 2573 3937 9279 5563 4882 7358 1135 1587 4989
据此估计,该运动员四次投篮恰有两次命中的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和,且2的等差中项.

1)求数列的通项公式;

2)若,求数列的前项和.

查看答案和解析>>

同步练习册答案