精英家教网 > 高中数学 > 题目详情
7.求值:(lg2)3+(lg5)3+lg2•lg125=1.

分析 利用乘法公式、对数的运算性质即可得出.

解答 解:原式=(lg2+lg5)[(lg2+lg5)2-3lg2•lg5]+3lg2•lg5
=1×(1-3lg2•lg5)+3lg2•lg5
=1-3lg2•lg5+3lg2•lg5
=1.
故答案为:1.

点评 本题考查了乘法公式与对数的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.复数$\frac{2+3i}{1-i}$在复平面内对应的点落在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设M=5a2-a+1,N=4a2+a-1,则M,N的大小关系为M>N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.将一颗骰子掷两次,则第二次出现的点数是第一次出现的点数的3倍的概率为(  )
A.$\frac{1}{18}$B.$\frac{1}{12}$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列命题:
①若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$,则$\overrightarrow{a}$∥$\overrightarrow{c}$;
②若$\overrightarrow{a}$≠$\overrightarrow{0}$,且$\overrightarrow{a}$.$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$;
③若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则$\overrightarrow{a}$,$\overrightarrow{b}$中至少有一个为$\overrightarrow{0}$;
④($\overrightarrow{a}$.$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$.$\overrightarrow{c}$).
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求定积分${∫}_{0}^{\frac{π}{2}}$$\sqrt{1-sin2x}$dx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}中,a1=1,a2=3,记A(n)=a1+a2+…+an,B(n)=a2+a3+…+an+1,C(n)=a3+a4+…+an+2(n∈N*),若对于任意n∈N*,A(n),B(n),C(n)成等差数列,则A(n)=(  )
A.3n-1B.2n-1+n2-1C.2n2-3n+2D.n2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.由曲线y=$\frac{1}{x}$(x>0),直线x=1,x=2及x轴所围成的平面图形的面积为(  )
A.ln2B.ln2-1C.1+ln2D.2ln2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在(-1,1)上的函数f(x)满足:f(x)-f(y)=f($\frac{x-y}{1-xy}$),当x∈(-1,0)时,有f(x)>0,且f(-$\frac{1}{2}$)=1.设m=f($\frac{1}{5}$)+f($\frac{1}{11}$)+…+f($\frac{1}{{n}^{2}+n-1}$)n≥2,n∈N*,则实数m与-1的大小关系是m>-1.

查看答案和解析>>

同步练习册答案