【题目】如图,已知定点
,点P是圆
上任意一点,线段
的垂直平分线与半径
相交于点
.
![]()
(1)当点
在圆上运动时,求点
的轨迹方程;
(2)过定点
且斜率为
的直线
与
的轨迹交于![]()
两点,若
,求点
到直线
的距离.
科目:高中数学 来源: 题型:
【题目】已知f(x)=x2+2xtanθ-1,x∈[-1,
],其中θ∈(-
,
).
(1)当θ=-
时,求函数f(x)的最大值;
(2)求θ的取值范围,使y=f(x)在区间[-1,
]上是单调函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解高三复习效果,从高三第一学期期中考试成绩中随机抽取50名考生的数学成绩,分成6组制成频率分布直方图如图所示:
![]()
(1)求
的值及这50名同学数学成绩的平均数
;
(2)该学校为制定下阶段的复习计划,从成绩在
的同学中选出3位作为代表进行座谈,若已知成在
的同学中男女比例为2:1,求至少有一名女生参加座谈的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn,a1=3,且Sn=nan+1-n2-n.
(1)求{an}的通项公式;
(2)若数列{bn}满足
,求{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B,C,D是空间不共面的四点,它们到平面a的距离之比依次为1:1:1:2,则满足条件的平面a的个数是:
A. 1 B. 4 C. 7 D. 8.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在区间D上的函数
,若存在正整数k,使不等式
恒成立,则称
为
型函数.
(1)设函数
,定义域
.若
是
型函数,求实数a的取值范围;
(2)设函数
,定义域
.判断
是否为
型函数,并给出证明.
(参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某台函数计算器上有一个显示屏和两个操作键.若按一下第一个操作键,则将原显示屏上的数变为
(
表示不超过实数x的最大整数);若按一下第二个操作键,则将原显示屏上的数变为
.称按一下任意一个操作键为一次操作.现在显示屏上的数为1.问:
(1)是否可以经过有限次操作,显示屏上出现整数2000?说明理由.
(2)小于2000的整数中有多少个数可以经过有限次操作在显示屏上出现?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(e为自然对数的底数,e≈2.718).对于任意的
(0,e),在区间(0,e)上总存在两个不同的
,
,使得
=
=
,则整数a的取值集合是_______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com