精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
10x-10-x10x+10-x
,判断f(x)的奇偶性和单调性.
分析:(1)用奇偶性定义判断,先看定义域,再探讨(x)与f(-x)的关系.
(2)用单调性定义判断,思路是,在区间上任取两个变量,且界定大小,再作差变形看符号.
解答:解:(1)已知函数f(x)=
10x-10-x
10x+10-x
=
102x-1
102x+1
,x∈R

f(x)=
10-x-10x
10-x+10x
=-
102x-1
102x+1
=-f(x),x∈R

∴f(x)是奇函数
(2)f(x)=
102x-1
102x+1
,x∈R
,设x1,x2∈(-∞,+∞),且x1<x2
f(x1) -f(x2) =
102x1-1
102x1+1
-
102x2-1
102x2+1
=
2(102x1-102x2)
(102x1+1)(102x2+1)
=
2(100x1-100x2)
(102x1+1)(102x2+1)

因为x1<x2,所以100x1100x2,所以f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)为增函数.
点评:本题主要考查用定义来判断函数的奇偶性和单调性,在判断奇偶性时要先看定义域,再看f(x)与f(-x)关系,在判断单调性时要注意变量的任意性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案