精英家教网 > 高中数学 > 题目详情

已知奇函数f(x)在定义域(-1,1)上单调递减,求使不等式f(a-2)+f(6-3a)<0成立的实数a的取值范围.

解:∵奇函数f(x)在定义域(-1,1)上单调递减,
∴不等式f(a-2)+f(6-3a)<0
可化为f(a-2)<-f(6-3a)
即f(a-2)<f(3a-6)

解得:
故实数a的取值范围
分析:根据奇函数f(x)在定义域(-1,1)上单调递减,我们可将不等式f(a-2)+f(6-3a)<0化为,解不等式可得答案.
点评:本题是函数单调性和函数奇偶性的综合应用,其中利用函数的性质将原不等式化为不等式组是解答的关键,本题易忽略函数的定义域而错解为a<2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知奇函数f(x)在x≥0时的图象是如图所示的抛物线的一部分,
(1)求函数f(x)的表达式,
(2)写出函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在[-1,0]上单调递减,又α,β为锐角三角形的两内角,则有(  )
A、f(sinα-sinβ)≥f(cosα-cosβ)B、f(sinα-cosβ)>f(cosα-sinβ)C、f(sinα-cosβ)≥f(cosα-sinβ)D、f(sinα-cosβ)<f(cosα-sinβ)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在R上单调递增,且f(2x-1)+f(
1
2
)<0,则x的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下面四个命题:
①已知函数f(x)=
x
 ,x≥0 
-x
 ,x<0 
且f(a)+f(4)=4,那么a=-4;
②一组数据18,21,19,a,22的平均数是20,那么这组数据的方差是2;
③已知奇函数f(x)在(0,+∞)为增函数,且f(-1)=0,则不等式f(x)<0的解集{x|x<-1};
④在极坐标系中,圆ρ=-4cosθ的圆心的直角坐标是(-2,0).
其中正确的是
②,④
②,④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在R上单调递减,且f(3-a)+f(1-a)<0,则a的取值范围是
(-∞,2)
(-∞,2)

查看答案和解析>>

同步练习册答案