精英家教网 > 高中数学 > 题目详情
14.若f(x)是定义在(0,+∞)上的增函数,且f($\frac{x}{y}$)=f(x)-f(y)
(1)求f(1)的值;
(2)若f(6)=1,求f(36)的值,并解不等式f(x+3)-f($\frac{1}{3}$)<2.

分析 (1)在f($\frac{x}{y}$)=f(x)-f(y)中,令x=y=1,能求出f(1).
(2)由f(6)=1,知f(x+3)-f($\frac{1}{3}$)<2=f(6)+f(6),故f($\frac{x+3}{2}$)<f(6),再由f(x)是(0,+∞)上的增函数,能求出不等式f(x+3)-f($\frac{1}{3}$)<2的解集.

解答 解:(1)令x=y=1,
则f(1)=f(1)-f(1),
即f(1)=0;
(2)∵f(6)=1,
∴f(x+3)-f($\frac{1}{3}$)<2=f(6)+f(6),
∴f(3x+9)-f(6)<f(6),
即:f($\frac{x+3}{2}$)<f(6),
∵f(x)是(0,+∞)上的增函数,
∴$\left\{\begin{array}{l}{\frac{x+3}{2}>0}\\{\frac{x+3}{2}<6}\end{array}\right.$.解得-3<x<9.
故不等式f(x+3)-f($\frac{1}{3}$)<2的解集为(-3,9).

点评 本题考查抽象函数的函数值的解法,考查不等式的解法.解题时要认真审题,注意抽象函数的性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数f(x)定义在(0,+∞)上单调递减,且满足f(x+y)=f(x)+f(y).已知f(2)=1,f(x)+f(x-3)≥2满足的x解集为(-1,0)∪(3,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式$\sqrt{x+2}$≥x的解集是(  )
A.{x|-1<x<2}B.{x|-2≤x≤2}C.{x|0≤x<2}D.{x|x≥0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)的定义域为[0,1),则函数f(x+1)的定义域为[-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.a∈R,则$\frac{{a}^{2}+2}{\sqrt{{a}^{2}+1}}$的最小值是2,此时a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设S为实数集R的非空子集,若对任意x,y∈S,都有x+y∈S,xy∈S,则称S为闭集合,已知集合A={x|x=a+$\sqrt{2}$b,a、b∈N}.
(1)证明:集合A为闭集合;
(2)若集合B={x|x=$\sqrt{2}$x1,x1∈A},证明:B?A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数的定义域:
(1)f(x)=$\sqrt{x+1}$+$\frac{1}{\sqrt{3-2x}}$;
(2)f(x)=$\sqrt{2x+3}+x$0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知全集为R,A={x|4x-1≤2x+3},B={x|x>5或x<0},求
(1)A∩B和A∪B;
(2)∁RA∩B和∁RB∪A;
(3)[∁R(A∪B)]∩A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x+1)=x-1+$\sqrt{2x-3}$
(1)求f(x)
(2)求f(x)的值域.

查看答案和解析>>

同步练习册答案