精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,是边长为2的正三角形,EFH分别为APABAC的中点,PFBE于点MCFBH于点N

求证:平面BEH

求证:

求直线PA与平面ABC所成角的正弦值.

【答案】(1)证明见解析;(2)证明见解析;(3)

【解析】

(1)推导出BH⊥AC,EH⊥AC,由此能证明AC⊥平面BEH.

(2)推导出N是△ABC的重心,M是△ABP的重心,从而,由此能证明PC∥MN.

(3)取BH的中点G,连结AG,推导出EG⊥BH,EG⊥AC,EG⊥平面ABC,从而∠EAG是PA与平面ABC所成角,由此能求出直线PA与平面ABC所成角的正弦值.

证明:是边长为2的正三角形,H是AC中点,

,E、H分别为AP、AC的中点,

平面BEH.

证明:交BE于点M,CF交BH于点N,

是边长为2的正三角形,,E、F、H分别为AP、AB、AC的中点,

的重心,,M是的重心,

取BH的中点G,连结AG,

平面BEH,平面ABC,

是PA与平面ABC所成角,

中,

直线PA与平面ABC所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCDA1B1C1D1中,棱长为2,MN分别为A1BAC的中点.

(1)证明:MN//B1C

(2)求A1B与平面A1B1CD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)设正实数满足,则()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆与圆相切,并且椭圆上动点与圆上动点间距离最大值为.

1)求椭圆的方程;

2)过点作两条互相垂直的直线交于两点,与圆的另一交点为,求面积的最大值,并求取得最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市面上有某品牌型和型两种节能灯,假定型节能灯使用寿命都超过5000小时,经销商对型节能灯使用寿命进行了调查统计,得到如下频率分布直方图:

某商家因原店面需要重新装修,需租赁一家新店面进行周转,合约期一年.新店面需安装该品牌节能灯5支(同种型号)即可正常营业.经了解,20瓦和55瓦的两种节能灯照明效果相当,都适合安装.已知型和型节能灯每支的价格分别为120元、25元,当地商业电价为0.75/千瓦时.假定该店面一年周转期的照明时间为3600小时,若正常营业期间灯坏了立即购买同型灯管更换.(用频率估计概率)

)根据频率直方图估算型节能灯的平均使用寿命;

)根据统计知识知,若一支灯管一年内需要更换的概率为,那么支灯管估计需要更换.若该商家新店面全部安装了型节能灯,试估计一年内需更换的支数;

)若只考虑灯的成本和消耗电费,你认为该商家应选择哪种型号的节能灯,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】名学生排成一排,求分别满足下列条件的排法种数,要求列式并给出计算结果.

(1)甲不在两端;

(2)甲、乙相邻;

(3)甲、乙、丙三人两两不得相邻;

(4)甲不在排头,乙不在排尾。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数满足,且为偶函数,若内单调递减,则下面结论正确的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与直线相切,圆心在轴上,且直线被圆截得的弦长为

1)求圆的方程;

2)过点作斜率为的直线与圆交于两点,若直线的斜率乘积为,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

同步练习册答案