精英家教网 > 高中数学 > 题目详情
若(1)a>b,c>b,则a>c;(2)若a>b,则ac2>bc2;(3)若a2>b2,则a>b;(4)若a>|b|,则a2>b2.以上命题中真命题的个数是(  )
A.1B.2C.3D.4
(1)是假命题,举例,如:2>1,3>1,但2<3.(注意:不要和不等式的传递性混淆;)
(2)是假命题,当c=0时,不等式不成立;
(3)是假命题,举例说明,(-2)2>12,但-2<1;
(4)是真命题,∵a>|b|>0,∴a2>|b|2=b2
故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

给出下列几种说法:
①△ABC中,由sinA=sinB可得A=B;
②△ABC中,若a2<b2+c2,则△ABC为锐角三角形;
③若a、b、c成等差数列,则a+c=2b;
④若ac=b2,则a、b、c成等比数列.
其中正确的有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知下列四个命题:
①若一个圆锥的底面半径缩小到原来的
1
2
,其体积缩小到原来的
1
4

②若两组数据的标准差相等,则它们的平均数也相等;
③直线x+y+1=0与圆x2+y2=
1
2
相切;
④“10a≥10b”是“lga≥lgb”的充分不必要条件.
其中真命题的序号是(  )
A.①②B.②④C.①③D.②③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法正确的是(  )
A.命题“?x∈R,ex>0”的否定是“?x∈R,ex>0”
B.命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
C.“x2+2x≥ax在x∈[1,2]上恒成立”?“(x2+2x)min≥(ax)max在x∈[1,2]上恒成立”
D.命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下面有5个命题:
①函数y=|sinx+
1
2
|的最小正周期是π.
②终边在y轴上的角的集合是{a|a=
2
,k∈Z}.
③在同一坐标系中,函数y=sinx的图象和函数y=x的图象有3个公共点.
④把函数y=3sin(2x+
π
3
)的图象向右平移得到y=3sin2x的图象.
⑤函数y=sinx在[0,π]上是减函数.
其中,真命题的编号是______.(写出所有真命题的编号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知复数z=
2
1-i
,给出下列四个结论:①|z|=2;②z2=2i;③z的共轭复数是
.
z
=-1+i
;④z的虚部为i.其中正确结论的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列四个命题,其中正确的是(  )
①已知向量
α
β
,则“
α
β
=0
”的充要条件是“
α
=
0
β
=
0
”;
②已知数列{an}和{bn},则“
lim
n→∞
anbn=0
”的充要条件是“
lim
n→∞
an=0
lim
n→∞
bn=0
”;
③已知z1,z2∈C,则“z1•z2=0”的充要条件是“z1=0或z2=0”;
④已知α,β∈R,则“sinα•cosβ=0”的充要条件是“α=kπ,(k∈Z)或β=
π
2
+kπ,(k∈Z)
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列有关命题的说法正确的是(   )
A.命题“若x2 =4,则x=2”的否命题为:“若x2 =4,则x≠2”
B.“x=2”是“x2—6x+8=0”的必要不充分条件
C.命题“若x=y,则cosx=cosy”的逆否命题为真命题
D.命题“存在x∈R,使得x2+x+3>0”的否定是:“对于任意的x∈R,均有x2 +x+3<0"

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

命题“”的否定是(  )
A.B.
C.D.

查看答案和解析>>

同步练习册答案