精英家教网 > 高中数学 > 题目详情
关于空间两条直线与平面,下列命题正确的是(   )
A.若,则B.若,则
C.,则D.若
D

试题分析:A:,A错;B:,或异面,B错;C:异面,C错;
D:面面垂直的性质,D正确.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(如图1)在平面四边形中,中点,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.

(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中, D是 AC的中点。

求证://平面 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.

(1)求证:四边形为平行四边形;
(2)试在直线AC上找一点F,使得.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是三个不同的平面,.则(     )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为两条不同的直线,为两个不同的平面,给出下列4个命题:
①若          ②若
③若         ④若
其中真命题的序号为(     )
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的面面积与底面面积间的关系。可以得出的正确结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两相互垂直,则                                       ”.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线∥平面,直线,则的位置关系是           (  )
A.B.异面
C.相交D.没有公共点

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCDA1B1C1D1的棱长为4,M为BD1的中点,N在A1C1上,且|A1N|=3|NC1|,则MN的长为   .

查看答案和解析>>

同步练习册答案