精英家教网 > 高中数学 > 题目详情
关于图中的正方体,下列说法正确的有: ___________.

点在线段上运动,棱锥体积不变;
点在线段上运动,直线AP与平面所成角不变;
③一个平面截此正方体,如果截面是三角形,则必为锐角三角形;
④一个平面截此正方体,如果截面是四边形,则必为平行四边形;
⑤平面截正方体得到一个六边形(如图所示),则截面在平面与平面间平行移动时此六边形周长先增大,后减小。
①③

试题分析:,则平面,即点在线段上运动时,棱锥的底面大小和高保持不变,故棱锥体积不变,即①正确;
设直线与平面所成的角为,由①知,点到平面的距离是不变的,因为不变,变,所以变化,最后也会发生变化,即②错的;
如图一个平面截此正方体,如果截面是三角形


为锐角,
同理,得,所以为锐角三角形,故③正确;
如图平面截正方体,截面为,显然不为平行四边形,故④错误;

平面截正方体得到一个六边形(如图),则截面在平面与平面间平行移动时此六边形周长保持不变,故⑤错误.
故答案为:①③.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥,底面是平行四边形,点在平面上的射影边上,且

(Ⅰ)设的中点,求异面直线所成角的余弦值;
(Ⅱ)设点在棱上,且.求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,侧面与底面垂直, 分别是的中点,,,.

(1)若点在线段上,问:无论的何处,是否都有?请证明你的结论;
(2)求二面角的平面角的余弦.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为菱形,的中点.

(1)若,求证:平面平面
(2)点在线段上,,若平面平面,且,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE的中点,G是AE,DF的交点.

(1)求证:GH∥平面CDE;
(2)求证:面ADEF⊥面ABCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于

(1)求证:⊥EF;
(2)求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点

(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方形中,的中点,是侧面内的动点且//平面,则与平面所成角的正切值得取值范围为                 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m,n是不同的直线,是不重合的平面,下列命题正确的是(  ):
A.若
B.若
C.若
D.若

查看答案和解析>>

同步练习册答案