精英家教网 > 高中数学 > 题目详情
11.设命题p:?x∈R,x2+x+1<0;命题q:?x∈[1,2],x2-1≥0;则以下命题是真命题的是(  )
A.¬p∧¬qB.p∨¬qC.¬p∧qD.p∧q

分析 先判断命题p、q的真假性,再判断复合命题的真假性即可.

解答 解:∵?x∈R,x2+x+1=${(x+\frac{1}{2})}^{2}$+$\frac{3}{4}$>0,
∴命题p是假命题;
又∵x∈[1,2]时,x2-1≥0恒成立,
∴命题q是真命题;
对于A,¬p为真命题,¬q为假命题,∴¬p∧¬q是假命题:
对于B,p为假命题,¬q为假命题,∴p∨¬q是假命题;
对于C,¬p是真命题,q是真命题,∴¬p∧q是真命题;
对于D,p是假命题,q是真命题,∴p∧q是假命题.
故选:C.

点评 本题考查了复合命题的真假性判断问题,解题时应熟记复合命题的真值表,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.如图,等腰直角△ABC内接于以AB为直径的圆O,假设你在圆形上随机撒一粒黄豆,则黄豆落到阴影部分的概率为$\frac{1}{π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知两个不相等的非零向量$\overrightarrow{a}$,$\overrightarrow{b}$,两组向量$\overrightarrow{{x}_{1}}$、$\overrightarrow{{x}_{2}}$、$\overrightarrow{{x}_{3}}$、$\overrightarrow{{x}_{4}}$、$\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}}$、$\overrightarrow{{y}_{2}}$、$\overrightarrow{{y}_{3}}$、$\overrightarrow{{y}_{4}}$,$\overrightarrow{{y}_{5}}$均由2个$\overrightarrow{a}$和3个$\overrightarrow{b}$排列而成.记S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$+$\overrightarrow{{x}_{5}}$•$\overrightarrow{{y}_{5}}$,Smin表示S所有可能取值中的最小值.则下列所给4个命题中,所有正确的命题的序号是①②④.
①S有3个不同的值;
②若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则Smin|$\overrightarrow{a}$|无关;
③若$\overrightarrow{a}$∥$\overrightarrow{b}$,则Smin与|$\overrightarrow{b}$|无关;
④若|$\overrightarrow{b}$|=2|$\overrightarrow{a}$|,Smin=8|$\overrightarrow{a}$|2,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了该问题算法的程序框图(如图所示),若要完成该题算法功能,则在图中判断框内(1)处为:i>30,执行框中的(2)处为p=p+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个命题中,真命题是(  )
A.a>b,c>d⇒ac>bdB.a<b⇒a2<b2C.$\frac{1}{a}<\frac{1}{b}$⇒a>bD.a>b,c<d⇒a-c>b-d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}是递增数列,且a2a5=32,a3+a4=12,数列{bn}满足b1=1,且bn+1=2bn+2an(n∈N*
(1)证明:数列{$\frac{{b}_{n}}{{a}_{n}}$}是等差数列;
(2)若对任意n∈N*,不等式(n+2)bn+1≥λbn,总成立,求实数λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知0<x<$\frac{2}{5}$,则y=2x-5x2的最大值为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,已知D是AB边上一点,若$\overrightarrow{AD}$=2$\overrightarrow{DB}$,则$\overrightarrow{CD}$=m$\overrightarrow{CA}$+n$\overrightarrow{CB}$其中m,n分别为(  )
A.m=$\frac{1}{3}$,n=-$\frac{2}{3}$B.m=$\frac{1}{3}$,n=$\frac{2}{3}$C.m=-$\frac{2}{3}$,n=$\frac{1}{3}$D.m=$\frac{2}{3}$,n=$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=(x-x2)ex,给出以下几个结论:
①f(x)>0的解集是{x|0<x<1};
②f(x)既有极小值,又有极大值;
③f(x)没有最小值,也没有最大值;
④f(x)有最大值,没有最小值.其中判断正确的是①②④.

查看答案和解析>>

同步练习册答案