¼ºÖªÇúÏßÇúÏßC2µÄ²ÎÊý·½³ÌÊÇ
x=m+tcos¦Á
y=tsin¦Á
£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¨¼«×ø±êϵÓëÖ±½Ç×ø±êϵxOyµÄ³¤¶Èµ¥Î»Ïàͬ£©£®ÈôÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ=4cos¦È£¬ÉäÏߦÈ=¦Õ£¬¦È=¦Õ+
¦Ð
4
£¬¦È=¦Õ-
¦Ð
4
ÓëÇúÏßC1½»ÓÚ¼«µãOÍâµÄÈýµãA£¬B£¬C£®
£¨¢ñ£©ÇóÖ¤£º|OB|+|OC|=
2
|OA|
£¨¢ò£©µ±¦Õ=
¦Ð
12
ʱ£¬B£¬CÁ½µãÔÚÇúÏßC2ÉÏ£¬ÇómÓë¦ÁµÄÖµ£®
¿¼µã£º¼òµ¥ÇúÏߵļ«×ø±ê·½³Ì,²ÎÊý·½³Ì»¯³ÉÆÕͨ·½³Ì
רÌâ£º×ø±êϵºÍ²ÎÊý·½³Ì
·ÖÎö£º£¨¢ñ£©ÒÀÌâÒâ¿ÉµÃ£¬|OA|=4cos¦Õ£¬|OB|=4cos(¦Õ+
¦Ð
4
)
£¬|OC|=4cos(¦Õ-
¦Ð
4
)
£¬ÀûÓÃÁ½½ÇºÍ²îµÄÓàÏÒ¹«Ê½»¯¼ò|OB|+|OC|£¬¼´¿ÉÖ¤µÃµÈʽ³ÉÁ¢£®
£¨¢ò£©µ±¦Õ=
¦Ð
12
ʱ£¬ÇóµÃB£¬CÁ½µãµÄ¼«×ø±ê£¬ÔÙ»¯Îª»¯ÎªÖ±½Ç×ø±ê£¬¸ù¾ÝC2ÊǾ­¹ýµã£¨m£¬0£©£¬Çãб½ÇΪ¦ÁµÄÖ±Ïߣ¬¶ø¾­¹ýµãB£¬CµÄÖ±Ïß·½³ÌΪy=-
3
(x-2)
£¬´Ó¶øÇóµÃmºÍ¦Á
½â´ð£º ½â£º£¨¢ñ£©ÒÀÌâÒ⣬|OA|=4cos¦Õ£¬|OB|=4cos(¦Õ+
¦Ð
4
)
£¬|OC|=4cos(¦Õ-
¦Ð
4
)
£¬
Ôò||OB|+|OC|=4cos(¦Õ+
¦Ð
4
)+4cos(¦Õ-
¦Ð
4
)
=4
2
cos¦Õ=
2
|OA|
£®
£¨¢ò£©µ±¦Õ=
¦Ð
12
ʱ£¬B£¬CÁ½µãµÄ¼«×ø±ê·Ö±ðΪ(2£¬
¦Ð
3
)
£¬(2
3
£¬-
¦Ð
6
)
£¬»¯ÎªÖ±½Ç×ø±êΪB(1£¬
3
)
£¬C(3£¬-
3
)
£®
C2ÊǾ­¹ýµã£¨m£¬0£©£¬Çãб½ÇΪ¦ÁµÄÖ±Ïߣ¬ÓÖ¾­¹ýµãB£¬CµÄÖ±Ïß·½³ÌΪy=-
3
(x-2)
£¬
ËùÒÔm=2£¬¦Á=
2¦Ð
3
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¼òµ¥ÇúÏߵļ«×ø±ê·½³ÌºÍ²ÎÊý·½³Ì£¬°ÑµãµÄ¼«×ø±ê»¯ÎªÖ±½Ç×ø±êµÄ·½·¨£¬Á½½ÇºÍ²îµÄÓàÏÒ¹«Ê½£¬ÊôÓÚ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=ax5-bx3+cx£¬ÇÒf£¨-3£©=7£¬Ôòf£¨3£©µÄֵΪ£¨¡¡¡¡£©
A¡¢13B¡¢-13C¡¢7D¡¢-7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Çóº¯Êýy=£¨
1
4
£©x-£¨
1
2
£©x+1£¬x¡Ê[-3£¬2]µÄµ¥µ÷Çø¼ä£¬²¢ÇóËüµÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªf£¨x£©=alnx£¬g£¨x£©=f£¨x£©+bx2+cx£¬ÇÒf¡ä£¨2£©=1£¬g£¨x£©ÔÚx=
1
2
ºÍx=2´¦Óм«Öµ£®
£¨1£©ÇóʵÊýa£¬b£¬cµÄÖµ£»
£¨2£©Èôk£¾0£¬ÅжÏg£¨x£©ÔÚÇø¼ä£¨k£¬2k£©Äڵĵ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬µØÆ½ÃæÉÏÓÐÒ»Æì¸ËOP£¬ÎªÁ˲âµÃËüµÄ¸ß¶Èh£¬ÔÚµØÃæÉÏȡһÌõ»ùÏßAB£¬AB=20m£¬ÔÚA´¦²âµÃPµãµÄÑö½Ç¡ÏOAP=30¡ã£¬ÔÚB´¦²âµÃPµãµÄÑö½Ç¡ÏOBP=45¡ã£¬ÓÖ²âµÃ¡ÏAOB=60¡ã£®
£¨1£©°ÑOA£¬OBÓú¬hµÄʽ×Ó±íʾ³öÀ´£»
£¨2£©Çóh£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÐ2ÃûÀÏʦ£¬3ÃûÄÐÉú£¬4ÃûÅ®ÉúÕÕÏàÁôÄÔÚÏÂÁÐÇé¿öÖУ¬¸÷ÓжàÉÙÖÖ²»Í¬Õ¾·¨£¿
£¨1£©ÄÐÉú±ØÐëÕ¾ÔÚÒ»Æð£»
£¨2£©Å®Éú²»ÄÜÏàÁÚ£»
£¨3£©ÀÏʦ±ØÐë×øÔÚÖмä
£¨4£©Èô4ÃûÅ®ÉúÉí¸ß¶¼²»µÈ£¬´Ó×óµ½ÓÒÅ®Éú±ØÐëÓɸߵ½°«µÄ˳ÐòÕ¾£»
£¨5£©ÀÏʦ²»Õ¾Á½¶Ë£¬ÄÐÉú±ØÐëÕ¾Öм䣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Æ½ÃæÖ±½Ç×ø±êϵÖÐÓеãA£¨0£¬1£©¡¢B£¨2£¬1£©¡¢C£¨3£¬4£©¡¢D£¨-1£¬2£©£¬ÕâËĵãÄÜ·ñÔÚͬһ¸öÔ²ÉÏ£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=2cos£¨
x
2
-
¦Ð
4
£©£¬x¡ÊR£®
£¨1£©Çóf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©Èôsin¦È=
3
5
£¬¦È¡Ê£¨
¦Ð
2
£¬¦Ð£©£¬Çóf£¨4¦È+¦Ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=lnx-2x2+3x£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨¢ò£©Ö¤Ã÷£º´æÔÚm¡Ê£¨1£¬+¡Þ£©£¬Ê¹µÃf£¨m£©=f£¨
1
2
£©£»
£¨¢ó£©¼Çº¯Êýy=f£¨x£©µÄͼÏóΪÇúÏߦ££®ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©ÊÇÇúÏߦ£ÉϵIJ»Í¬Á½µã£®Èç¹ûÔÚÇúÏߦ£ÉÏ´æÔÚµãM£¨x0£¬y0£©£¬Ê¹µÃ£º¢Ùx0=
x1+x2
2
£¨a¡ÊR£©£»¢ÚÇúÏߦ£ÔÚµãM´¦µÄÇÐÏ߯½ÐÐÓÚÖ±ÏßAB£¬Ôò³Æº¯Êýf£¨x£©´æÔÚ¡°ÖÐÖµ°éËæÇÐÏß¡±£¬ÊÔÎÊ£ºº¯Êýf£¨x£©ÊÇ·ñ´æÔÚ¡°ÖÐÖµ°éËæÇÐÏß¡±£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸