精英家教网 > 高中数学 > 题目详情
2.已知离散型随机变量X的分布列如下:
X012
Pa4a5a
则均值E(X)与方差D(X)分别为(  )
A.1.4,0.2B.0.44,1.4C.1.4,0.44D.0.44,0.2

分析 由离散型随机变量X的分布列的性质求出a=0.1,由此能求出E(X)和D(X).

解答 解:由离散型随机变量X的分布列的性质得:
a+4a+5a=1,
解得a=0.1,
∴E(X)=0×0.1+1×0.4+2×0.5=1.4,
D(X)=(0-1.4)2×0.1+(1-1.4)2×0.4+(2-1.4)2×0.5=0.44.
故选:C.

点评 本题考查离散型随机变量的数学期望和方差的求法,是基础题,注意离散型随机变量的分布列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.直线y=x-1的倾斜角为45度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△ABC的外接圆半径为1,圆心为O,且$\overrightarrow{OA}$$+\overrightarrow{OB}$$+\sqrt{2}$$\overrightarrow{OC}$=0,则△ABC的面积为(  )
A.1+$\sqrt{2}$B.$\frac{1}{2}$+$\sqrt{2}$C.1+$\frac{\sqrt{2}}{2}$D.$\frac{1}{2}+\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\frac{\sqrt{1-{x}^{2}}-1}{x-2}$的值域是(  )
A.[-$\frac{4}{3}$,$\frac{4}{3}$]B.[-$\frac{4}{3}$,0]C.[0,$\frac{4}{3}$]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.等比数列{an}的前n项和为Sn=32-n-t(n∈N*),则实数t的值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知非空集合A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},求使A⊆B成立的所有实数a组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用“五点法”画函数y=1-sin3x,x∈[$\frac{π}{3}$,$\frac{5π}{3}$]的图象,是否能求该函数图象与直线x=$\frac{π}{3}$,x=$\frac{5π}{3}$及x轴所围成的图象的面积?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在三角形、四边形、正六边形和圆中,一定是平面图形的有三角形、正六边形、圆.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.以正十三边形的顶点为顶点的形状不同的三角形共有14个(说明:全都的三角形视为形状相同)

查看答案和解析>>

同步练习册答案