精英家教网 > 高中数学 > 题目详情
M为抛物线y2=4x上一动点,F是焦点,P(5,4)是定点,则当|MP|+|MF|取最小值时点M的横坐标是(  )
A、2B、4C、6D、8
考点:抛物线的简单性质
专题:圆锥曲线中的最值与范围问题
分析:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|进而把问题转化为求|MP|+|MD|取得最小,进而可推断出当D,M,P三点共线时|MP|+|MD|最小,答案可得.
解答: 解:设点M在准线上的射影为D,则根据抛物线的定义可知|MF|=|MD|
∴要求|MP|+|MF|取得最小值,即求|MP|+|MD|取得最小,
当D,M,P三点共线时|MP|+|MD|最小,为5-(-1)=6.
故选C.
点评:本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当D,M,P三点共线时|PM|+|MD|最小,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知b=-a2+3lna,d=c+2,则(a-c)2+(b-d)2的最小值为(  )
A、
2
B、2
C、2
2
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

为了调查评价“中国好声音”栏目播出前后的电视台收视率有无明显提高,在播出前后分别从居民点抽取了100位居民,调查对“中国好声音”的关注情况,制成列联表,经过计算得K2的观测值k≈6.99,根据这一数据分析,下列说法正确的是(  )
A、有99%的人认为该栏目优秀
B、有99%的人认为“中国好声音”栏目播出前后电视台的收视率有明显提高
C、有99%的把握认为“中国好声音”栏目播出前后电视台的收视率有明显提高
D、没有理由认为“中国好声音”栏目播出前后电视台的收视率有无明显提高

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥V-ABCD的底面ABCD是边长为2的正方形,其他四个侧面都是侧棱长为
5
的等腰三角形.
(1)求证:平面VAC⊥平面VBD;
(2)若M,N分别为棱VA,BC的中点,求证:MN∥侧面VCD;
(3)试求(2)中的MN与底面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图正方体ABCD-A1B1C1D1,棱长为1,P为BC中点,Q为线段CC1上的动点,过A、P、Q的平面截该正方体所得的截面记为S,则下列命题正确的是
 
.(写出所有正确命题的编号) 
①当0<CQ<
1
2
时,S为四边形
②当CQ=
1
2
时,S为等腰梯形
③当CQ=
3
4
时,S与C1D1交点R满足C1R1=
1
3

④当
3
4
<CQ<1时,S为六边形
⑤当CQ=1时,S的面积为
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱锥S-ABC中,M、N分别为棱SC、BC的中点,并且AM⊥MN,若侧棱长SA=
3
,则正三棱锥S-ABC的外接球的体积为(  )
A、
9
2
π
B、9π
C、12π
D、16π

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线的准线为x=-
P
2
(p>0),顶点在原点,直线l:y=x-1过抛物线的焦点,并与抛物线交于A,B两点.求抛物线方程和弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

设R上的函数f(x)满足f(4)=1,它的导函数的图象如图,若正数a、b满足f(2a+b)<1,则
b+2
a+2
的取值范围是(  )
A、(
1
3
1
2
B、(-∞,
1
2
)∪(3,+∞)
C、(
1
2
,3)
D、(-∞,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点
 

查看答案和解析>>

同步练习册答案