精英家教网 > 高中数学 > 题目详情
14.已知各项均不为零的数列{an},定义向量$\overrightarrow{{c}_{n}}$=(an,an+1),$\overrightarrow{{b}_{n}}$=(n,n+1),n∈N*.下列命题中真命题是(  )
A.若任意n∈N*总有$\overrightarrow{{c}_{n}}$⊥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等比数列
B.若任意n∈N*总有$\overrightarrow{{c}_{n}}$∥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等比数列
C.若任意n∈N*总有$\overrightarrow{{c}_{n}}$⊥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等差数列
D.若任意n∈N*总有$\overrightarrow{{c}_{n}}$∥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等差数列

分析 根据题意,分析平面向量平行、垂直的坐标表示,
从而判断数列{an}是否为等差或等比数列.

解答 解:∵向量$\overrightarrow{{c}_{n}}$=(an,an+1),$\overrightarrow{{b}_{n}}$=(n,n+1),n∈N*
∴当$\overrightarrow{{c}_{n}}$∥$\overrightarrow{{b}_{n}}$,(n+1)an-nan+1=0,
即$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$;
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{2}}{{a}_{1}}$•a1
=$\frac{n}{n-1}$•$\frac{n-1}{n-2}$•$\frac{n-2}{n-3}$•…•$\frac{2}{1}$•a1
=na1
∴数列{an}为等差数列,
∴D正确,B错误;
当$\overrightarrow{{c}_{n}}$⊥$\overrightarrow{{b}_{n}}$时,nan+(n+1)an+1=0,
即$\frac{{a}_{n+1}}{{a}_{n}}$=-$\frac{n}{n+1}$;
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{2}}{{a}_{1}}$•a1
=-$\frac{n-1}{n}$•(-$\frac{n-2}{n-1}$)•(-$\frac{n-3}{n-2}$)•…•(-$\frac{1}{2}$)•a1
=$\frac{{(-1)}^{n-1}}{n}$•a1
∴数列{an}既不是等差数列,也不是等比数列,
∴A、C错误.
故选:D.

点评 本题考查了平面向量平行的坐标表示,也考查了等差与等比数列的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届山西临汾一中高三10月月考数学(理)试卷(解析版) 题型:选择题

若集合,集合,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若θ是第2象限角,则点(sin(cosθ),cos(sinθ))在第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,BD=$\sqrt{3}$,
(1)求cos∠BAD的值
(2)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,已知O(0,0),A($\frac{15}{4}$,0),曲线C上任一点M满足|OM|=4|AM|,点P在直线y=$\sqrt{2}$(x-1)上,如果曲线C上总存在两点到点P的距离为2,那么点P的横坐标t的范围是(  )
A.1<t<3B.1<t<4C.2<t<3D.2<t<4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知直线l:4x-3y+m=0(m<0)被圆C:x2+y2+2x-2y-6=0所截的弦长是圆心C到直线l的距离的2倍,则m等于(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知四边形ABCD为平行四边形,A(0,3),B(4,1),D为边AB的垂直平分线与x轴的交点.
(Ⅰ)求点C的坐标
(Ⅱ)一条光线从点D射出,经直线AB反射,反射光线经过CD的中点E,求反射光线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知随机变量X是分布列如表,则E(2X+1)=(  )
 X 1 2
 P 0.3 0.7
A.4.4B.0.6C.0.3D.1.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.化简f(α)=$\frac{sin(α+\frac{π}{2})cos(\frac{3π}{2}-α)tan(π-α)}{tan(α+π)sin(π-α)}$,若tanα=$\frac{1}{3}$,α∈(π,$\frac{3π}{2}$),求f(α)的值.

查看答案和解析>>

同步练习册答案