精英家教网 > 高中数学 > 题目详情
2.如图,在△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,BD=$\sqrt{3}$,
(1)求cos∠BAD的值
(2)求BC的长.

分析 (1)由∠BAC=∠BAD+∠DAC,∠DAC=90°,得到∠BAC=∠BAD+90°,代入并利用诱导公式化简sin∠BAC,能求出cos∠BAD的值.
(2)在三角形ABD中,由AB,BD及cos∠BAD的值,利用余弦定理即可求出AD的长,由正弦定理得:$\frac{AB}{sinC}=\frac{BC}{sinA}$,求出sinC=$\frac{4}{BC}$,再由正弦定理得:$\frac{AD}{sinC}=\frac{BC-BD}{sinA}$,由此能求出BC.

解答 解:(1)∵AD⊥AC,∴∠DAC=90°,
∴∠BAC=∠BAD+∠DAC=∠BAD+90°,
∴sin∠BAC=sin(∠BAD+90°)=cos∠BAD=$\frac{2\sqrt{2}}{3}$,
∴cos∠BAD=$\frac{2\sqrt{2}}{3}$.
(2)在△ABD中,AB=3$\sqrt{2}$,BD=$\sqrt{3}$,
根据余弦定理得:BD2=AB2+AD2-2AB•AD•cos∠BAD=18+AD2-8AD=3,
解得AD=3,或AD=5,
当AD=5时,AD>AB,不成立,故舍去AD=5,
在△ABC中,由正弦定理得:$\frac{AB}{sinC}=\frac{BC}{sinA}$,∴sinC=$\frac{ABsinA}{BC}$=$\frac{3\sqrt{2}×\frac{2\sqrt{2}}{3}}{BC}$=$\frac{4}{BC}$,
在△ADC中,由正弦定理得:$\frac{AD}{sinC}=\frac{BC-BD}{sinA}$,即$\frac{3}{\frac{4}{BC}}=\frac{BC-\sqrt{3}}{90°}$,
解得BC=4$\sqrt{3}$.

点评 本题考查角余弦值的求法,考查边长的求法,考查余弦定理、正弦定理、同角三角函数恒等式、诱导公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届山西临汾一中高三10月月考数学(理)试卷(解析版) 题型:填空题

的展开式的常数项为

查看答案和解析>>

科目:高中数学 来源:2017届陕西汉中城固县高三10月调研数学(文)试卷(解析版) 题型:解答题

已知椭圆)的离心率,且椭圆经过点,直线与椭圆交于不同的两点

(1)求椭圆的方程;

(2)若△的面积为1(为坐标原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(a+2b)(2a+b)4的展开式中,各项系数和为243.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知:∠BAC=42°,∠CAD=30°,∠BDA=72°,∠BDC=12°,求∠CBD=?(需详细解题过程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线的左右两个焦点分别为F1,F2,过F2作双曲线实轴的垂线交双曲线于点P,若△F1PF2为等腰直角三角形,则双曲线的离心率是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}+1}{2}$C.2$+\sqrt{2}$D.1$+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知各项均不为零的数列{an},定义向量$\overrightarrow{{c}_{n}}$=(an,an+1),$\overrightarrow{{b}_{n}}$=(n,n+1),n∈N*.下列命题中真命题是(  )
A.若任意n∈N*总有$\overrightarrow{{c}_{n}}$⊥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等比数列
B.若任意n∈N*总有$\overrightarrow{{c}_{n}}$∥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等比数列
C.若任意n∈N*总有$\overrightarrow{{c}_{n}}$⊥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等差数列
D.若任意n∈N*总有$\overrightarrow{{c}_{n}}$∥$\overrightarrow{{b}_{n}}$成立,则数列{an}是等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2+(2-a2)x-alnx,(a∈R).
(1)a=-1时,求函数f(x)的极值;
(2)讨论函数f(x)的单调性;
(3)当函数f(x)恰有一个零点时,分析a的取值情况.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=cos2x-$\sqrt{2}$sinx-$\frac{1}{2}$,π≤x≤$\frac{3π}{2}$的最大值为1.

查看答案和解析>>

同步练习册答案