分析 由条件利用正弦函数的定义域和值域求得sinx的范围,再利用二次函数的性质求得函数y=cos2x-$\sqrt{2}$sinx-$\frac{1}{2}$的最大值即可.
解答 解:y=cos2x-$\sqrt{2}$sinx-$\frac{1}{2}$=1-sin2x-$\sqrt{2}$sinx$-\frac{1}{2}$
=$\frac{1}{2}-si{n}^{2}x-\sqrt{2}sinx$=1-(sinx+$\frac{\sqrt{2}}{2}$)2,在区间[π,$\frac{3π}{2}$]上,sinx∈[-1,0],
∴当sinx=-$\frac{\sqrt{2}}{2}$,即$x=\frac{5π}{4}$时,函数y取得最大值为1.
故答案为:1.
点评 本题主要考查正弦函数的定义域和值域,二次函数的性质的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($-\frac{π}{6}$,0) | B. | ($-\frac{π}{12}$,-1) | C. | ($\frac{π}{6}$,-1) | D. | ($\frac{π}{12}$,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)在定义域是增函数 | B. | f(x)的对称中心是($\frac{kπ}{4}$-$\frac{π}{6}$,0)(k∈Z) | ||
| C. | f(x)是奇函数 | D. | f(x)的对称轴是x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 对?x,y∈R,若x+y≠0,则x≠1且y≠-1 | |
| B. | 设随机变量X~N(1,52),若P(X≤0)=P(X≥a-2),则实数a的值为2 | |
| C. | 命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0” | |
| D. | ${∫}_{0}^{1}$(x2+$\sqrt{1-{x}^{2}}$)dx=$\frac{π}{4}$+$\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com