精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x,m∈R.
(Ⅰ)当m=$\frac{1}{2}$时,求函数f(x)的单调递增区间;
(Ⅱ)若关于x的不等式f(x)+g(x)≤mx-1恒成立,求整数m的最小值.

分析 (Ⅰ)先求函数的定义域,然后求导,通过导数大于零得到增区间;
(Ⅱ)关于x的不等式f(x)+g(x)≤mx-1恒成立,即为lnx-$\frac{1}{2}$mx2+(1-m)x+1≤0恒成立,令h(x)=lnx-$\frac{1}{2}$mx2+(1-m)x+1,求得导数,求得单调区间,讨论m的符号,由最大值小于等于0,通过分析即可得到m的最小值.

解答 解:(Ⅰ)当m=$\frac{1}{2}$时,f(x)=lnx-$\frac{1}{2}$x2,(x>0),
由f′(x)=$\frac{1}{x}$-x=$\frac{1{-x}^{2}}{x}$>0,得x<1,又∵x>0,
∴函数f(x)的单调递增区间为(0,1).
(Ⅱ)关于x的不等式F(x)≤mx-1恒成立,
即为lnx-$\frac{1}{2}$mx2+(1-m)x+1≤0恒成立,
令h(x)=lnx-$\frac{1}{2}$mx2+(1-m)x+1,
h′(x)=$\frac{1}{x}$-mx+1-m=$\frac{-{mx}^{2}+(1-m)x+1}{x}$,
当m≤0可得h′(x)>0恒成立,h(x)递增,无最大值,不成立;
当m>0时,h′(x)=$\frac{-m(x+1)(x-\frac{1}{m})}{x}$,
当x>$\frac{1}{m}$,h′(x)<0,h(x)递减,当0<x<$\frac{1}{m}$,h′(x)>0,h(x)递增,
则有x=$\frac{1}{m}$取得极大值,且为最大值.
由恒成立思想可得ln$\frac{1}{m}$-$\frac{1}{2m}$+$\frac{1}{m}$≤0,
即为2mlnm≥1,
显然m=1不成立,m=2时,4ln2≥1即有24≥e成立.
整数m的最小值为2.

点评 本题考查了利用导数研究函数的单调性的基本思路,不等式恒成立问题转化为函数最值问题来解的方法.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{1}{2}{x^2}$+2alnx+(a+2)x,a∈R
(1)讨论函数f(x)的单调性;
(2)是否存在实数a,对任意的x1,x2∈(0,1)且x1≠x2,有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$>a恒成立?若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}{x^2}$-2lnx+a(a∈R),g(x)=-x2+3x-4.
(1)求f(x)的单调区间;
(2)设a=0,直线x=t与f(x),g(x)的图象分别交于点M、N,当|MN|达到最小值时,求t的值;
(3)若对于任意x∈(m,n)(其中n-m≥1),两个函数图象分别位于直线l:x-y+s=0的两侧(与直线l无公共点),则称这两个函数存在“EN通道”.试探究:f(x)与g(x)是否存在“EN通道”,若存在,求出x的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(2,-3),若满足$\overrightarrow{a}⊥\overrightarrow{b}$,则m=(  )
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=$\frac{1}{2}$.则下列结论中正确的个数为(  )
①AC⊥BE;
②EF∥平面ABCD;
③三棱锥A-BEF的体积为定值;
④△AEF的面积与△BEF的面积相等.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.①设数列{an}的前n项和为Sn,由an=2n-1,求出S${\;}_{1}={1}^{2}$,S${\;}_{2}={2}^{2}$,S${\;}_{3}={3}^{2}$,…,推断:S${\;}_{n}={n}^{2}$;②由圆x2+y2=r2的面积S=πr2,推断:椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的面积S=πab.则①②两个推理依次是(  )
A.归纳推理,类比推理B.演绎推理,类比推理
C.类比推理,演绎推理D.归纳推理,演绎推理

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=Asin(ωx-$\frac{π}{3}$)+2(A>0,ω>0)的最大值为4,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)设α∈(0,π),则f($\frac{α}{2}$)=3,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x)满足:f(x)>1-f′(x),f(0)=4,则不等式$\frac{{{e^x}f(x)}}{{{e^x}+3}}$>1(其中e为自然对数的底数)的解集为(  )
A.(3,+∞)B.(-∞,0)∪(3,+∞)C.(0,+∞)D.(-∞,0)∪(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一只蚂蚁在一直角边长为1m的等腰直角三角形ABC(∠B=90°)内随机爬行,则蚂蚁距A点不超过1m的概率为$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案