【题目】盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品、
【答案】(1)
(2)
(3)![]()
【解析】
(1)从6只灯泡中有放回的任取两只,共
种不同取法,取到的两只都是次品的情况为
种,由此即可求出结果;
(2)取到的两只中正品、次品各一只有两种可能:第一次取到正品、第二次取到次品,有
种取法;或者第一次取到次品、第二次取到正品,有
种取法,进而可得出结果;
(3)利用对立事件概率公式即可求出结果.
(1) 由题意,从6只灯泡中有放回的任取两只,共
种不同取法,
取到的两只都是次品的情况为
种,所以取到的2只都是次品的概率为
;
(2) 取到的两只中正品、次品各一只有两种可能:
第一次取到正品、第二次取到次品,有
种取法;
或者第一次取到次品、第二次取到正品,有
种取法.
因此取到的2只中正品、次品各一只的概率为
;
(3)取到的2只至少有一只的正品的概率为
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的坐标方程为
,若直线
与曲线
相切.
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
、
于原点
构成
,且满足
,求面积
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,圆
的参数方程为
(
为参数),在以原点
为极点,
轴的非负半轴为极轴建立的极坐标系中,直线
的极坐标方程为
.
(1)求圆
的普通方程和直线
的直角坐标方程;
(2)设直线
与
轴,
轴分别交于
,
两点,点
是圆
上任一点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
两地相距
,某船从
地逆水到
地,水速为
,船在静水中的速度为
.若船每小时的燃料费与其在静水中速度的平方成正比,当
,每小时的燃料费为
元,为了使全程燃料费最省,船的实际速度应为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为
=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(
,
)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为
.
(1)求这支篮球队首次获胜前己经负了两场的概率;
(2)求这支篮球队在6场比赛中恰好获胜3场的概率;
(3)求这支篮球队在6场比赛中获胜场数的均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小刘同学大学毕业后自主择业,回到农村老家发展蜜桔收购,然后卖出去,帮助村民致富.小刘打算利用“互联网+”的模式进行销售.为了更好地销售,假设该村每颗蜜柚树结果50个,现随机选了两棵树的蜜柚摘下来进行测重,其质量分布在区间内(单位:千克)的个数:
,10;
,10;
,15;
,40;
,20;
,5.
(1)作出其频率分布直方图并求其众数;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村蜜袖树上大约还有100颗树的蜜柚待出售,小刘提出两种收购方案:
![]()
A.所有蜜柚均以16元/千克收购;
B.低于2.25千克的蜜柚以22元/个收购,高于或等于2.25千克的以30元/个收购.请你通过计算为该村选择收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆C过定点F(2,0),且与直线x=-2相切,圆心C的轨迹为E,
(1)求圆心C的轨迹E的方程;
(2)若直线l交E与P,Q两点,且线段PQ的中心点坐标(1,1),求|PQ|.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com