精英家教网 > 高中数学 > 题目详情
11.设全集U=R,集合A={x|x2>1},B={x|x>2},则A∩(∁UB)=(  )
A.{x|-1≤x<2}B.{x|x<-1或1<x≤2}C.{x|x<-1}D.{x|x>2}

分析 求出A中不等式的解集确定出A,找出A与B补集的交集即可.

解答 解:∵全集U=R,B={x|x>2},
∴∁UB={x|x≤2},
又A={x|x>1或x<-1},
∴A∩(∁UB)={x|x<-1或1<x≤2},
故选:B.

点评 此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.2016年元旦来临之际,某网站举行一次促销答题话动,若在网站给出一道多项选择题,答题者选出所有的正确选的概率为m,此时送出50元优惠券,选出一部分(没有全部选出,但也没有选出错误项)的概率为n,此时送出20元优惠券,选出错误选项(即包含错误选项)的概率为0.2,此时不送优惠券,则$\frac{1}{m}$+$\frac{9}{n}$的最小值为(  )
A.10B.20C.25D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.2015年秋季开始,本市初一学生开始进行开放性科学实践活动,学生可以在全市范围内进行自主选课类型活动,选课数目、选课课程不限.为了了解学生的选课情况,某区有关部门随机抽取本区600名初一学生,统计了他们对于五类课程的选课情况,用“+”表示选,“-”表示不选.结果如表所示:
人数   课程课程一课程二课程三课程四课程五
  50++-+-
  80++---
  125+-+-+
  150-+++-
  94+--++
  76--++-
  25--+-+
(1)估计学生既选了课程三,又选了课程四的概率;
(2)估计学生在五项课程中,选了三项课程的概率;
(3)如果这个区的某学生已经选了课程二,那么其余四项课程中他选择哪一项的可能性最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线y=x与抛物线y=2-x2所围成的图形面积为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某单位从包括甲、乙在内的5名应聘者中招聘2人,如果这5名应聘者被录用的机会均等,则甲、乙两人中至少有1人被录用的概率是(  )
A.$\frac{3}{4}$B.$\frac{7}{10}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的右焦点、右顶点、虚轴的一个端点所组成的三角形叫做双曲线的“黄金三角形”,则双曲线C:x2-y2=4的“黄金三角形”的面积是(  )
A.$\sqrt{2}$-1B.2$\sqrt{2}$-2C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知0<θ<$\frac{π}{2}$,f(θ)=1+m+m($\frac{cosθ-1}{sinθ}$)+$\frac{sinθ-1}{cosθ}$(m>0),则使得f(θ)有最大值时的m的取值范围是(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{3}$,3)C.[1,3]D.[$\frac{1}{4}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线f(x)=$\sqrt{2}$sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,曲线f(x)的解析式为f(x)=$\sqrt{2}$sin(2x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,M是以A、B为焦点的双曲线x2-y2=2右支上任一点,若点M到点C(3,1)与点B的距离之和为S,则S的取值范围是(  )
A.[$\sqrt{26}$+$\sqrt{2}$,+∞)B.[$\sqrt{26}$-$2\sqrt{2}$,+∞)C.[$\sqrt{26}$-$2\sqrt{2}$,$\sqrt{26}$+$2\sqrt{2}$)D.[$\sqrt{26}$-$\sqrt{2}$,+∞)

查看答案和解析>>

同步练习册答案