精英家教网 > 高中数学 > 题目详情
3.已知0<θ<$\frac{π}{2}$,f(θ)=1+m+m($\frac{cosθ-1}{sinθ}$)+$\frac{sinθ-1}{cosθ}$(m>0),则使得f(θ)有最大值时的m的取值范围是(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{3}$,3)C.[1,3]D.[$\frac{1}{4}$,1]

分析 利用三角函数的诱导公式把已知函数化成正切函数,令$tan\frac{θ}{2}=t$(0<t<1),构造一个新函数g(t),再根据不等式的基本性质得到g(t)在(0,1)上必有最大值,然后求出m的取值范围.

解答 解:f(θ)=1+m+m($\frac{cosθ-1}{sinθ}$)+$\frac{sinθ-1}{cosθ}$=$1+m-mtan\frac{θ}{2}-\frac{1-tan\frac{θ}{2}}{1+tan\frac{θ}{2}}$,
令$tan\frac{θ}{2}=t$(0<t<1),则$g(t)=1+m-mt-\frac{1-t}{1+t}$=$2+2m-[m(t+1)+\frac{2}{t+1}]$,
$m(t+1)+\frac{2}{t+1}≥2\sqrt{2m}$当且仅当$m=\frac{2}{(t+1)^{2}}$时等号成立,即g(t)在(0,1)上必有最大值,
∴m的范围为($\frac{1}{2}$,2).
故选:A.

点评 本题考查三角函数的化简求值,考查不等式的基本性质,考查计算能力.是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如果x是实数,且x>-1,x≠0,n为大于1的自然数,用数学归纳法证明:(1+x)n>1+nx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=2sinxsin(x+3φ)是奇函数,其中φ∈(0,$\frac{π}{2}$),则函数g(x)=cos(2x-φ)的图象(  )
A.关于点($\frac{π}{12}$,0)对称
B.可由函数f(x)的图象向右平移$\frac{π}{3}$个单位得到
C.可由函数f(x)的图象向左平移$\frac{π}{6}$个单位得到
D.可由函数f(x)的图象向左平移$\frac{π}{3}$个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设全集U=R,集合A={x|x2>1},B={x|x>2},则A∩(∁UB)=(  )
A.{x|-1≤x<2}B.{x|x<-1或1<x≤2}C.{x|x<-1}D.{x|x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|y=x2+1},B={y|y=x2+1},则下列关系正确的是(  )
A.A∩B=∅B.A∩B=AC.A=BD.A∩B=B

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,给出的是计算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{99}$+$\frac{1}{101}$的值的一个程序框图,判断框内应填入的条件是(  )
A.i<101?B.i>101?C.i≤101?D.i≥101?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知tanα=2,则sin2α=(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在梯形ABCD中,AB∥CD,AB=2AD=2DC=2CB=2,四边形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,点G是BF的中点.
(Ⅰ)求证:CG∥平面ADF;
(Ⅱ)求三棱锥E-AFB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.求函数y=sinx的图象,x∈[0,π]与函数y=cosx的图象,x∈[0,π]图象围成的图形面积为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案