精英家教网 > 高中数学 > 题目详情
11.如图,在梯形ABCD中,AB∥CD,AB=2AD=2DC=2CB=2,四边形ACFE是矩形,AE=1,平面ACFE⊥平面ABCD,点G是BF的中点.
(Ⅰ)求证:CG∥平面ADF;
(Ⅱ)求三棱锥E-AFB的体积.

分析 (Ⅰ)取AB的中点H,连接CH,GH,由已知可得四边形AHCD是平行四边形,得到CH∥DA,进一步得到CH∥平面ADF,由GH是三角形ABF的中位线可得有GH∥平面ADF,由面面平行的判定得平面CGH∥平面ADF,继而得到CG∥平面ADF;
(Ⅱ)由AB∥CD,结合已知得到四边形ABCD是等腰梯形,由H是AB的中点,可得四边形AHCD是菱形,得到BC⊥AC,又平面ACFE⊥平面ABCD,得到BC⊥平面ACEF,可知BC是三棱锥B-AEF的高,然后利用等积法求得三棱锥E-AFB的体积.

解答 (Ⅰ)证明:取AB的中点H,连接CH,GH,
∵AB=2AH=2CD,且DC∥AB,
∴AH∥DC且AH=DC,
∴四边形AHCD是平行四边形,
∴CH∥DA,则有CH∥平面ADF,
∵GH是三角形ABF的中位线,
∴GH∥AF,则有GH∥平面ADF,
又CH∩GH=H,
∴平面CGH∥平面ADF,
CG?平面CHG,则CG∥平面ADF;
(Ⅱ)解:∵AB∥CD,AB=2AD=2CD=2CB=1,
∴四边形ABCD是等腰梯形,
H是AB的中点,
∴四边形AHCD是菱形,CH=$\frac{1}{2}AB$,
∴BC⊥AC,
又∵平面ACFE⊥平面ABCD,交线为AC,
∴BC⊥平面ACEF,
即BC是三棱锥B-AEF的高,且BC=1,
∵VE-AFB=VB-AEF
在等腰三角形ADC中,求得AC=$\sqrt{3}$,
∴VE-AFB=VB-AEF=$\frac{1}{3}×\frac{1}{2}×1×\sqrt{3}×1=\frac{\sqrt{3}}{6}$.

点评 本题考查直线与平面平行的判定,考查了棱锥体积的求法,训练了等积法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.2015年秋季开始,本市初一学生开始进行开放性科学实践活动,学生可以在全市范围内进行自主选课类型活动,选课数目、选课课程不限.为了了解学生的选课情况,某区有关部门随机抽取本区600名初一学生,统计了他们对于五类课程的选课情况,用“+”表示选,“-”表示不选.结果如表所示:
人数   课程课程一课程二课程三课程四课程五
  50++-+-
  80++---
  125+-+-+
  150-+++-
  94+--++
  76--++-
  25--+-+
(1)估计学生既选了课程三,又选了课程四的概率;
(2)估计学生在五项课程中,选了三项课程的概率;
(3)如果这个区的某学生已经选了课程二,那么其余四项课程中他选择哪一项的可能性最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知0<θ<$\frac{π}{2}$,f(θ)=1+m+m($\frac{cosθ-1}{sinθ}$)+$\frac{sinθ-1}{cosθ}$(m>0),则使得f(θ)有最大值时的m的取值范围是(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{3}$,3)C.[1,3]D.[$\frac{1}{4}$,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线f(x)=$\sqrt{2}$sin(ωx+φ)(x∈R,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,曲线f(x)的解析式为f(x)=$\sqrt{2}$sin(2x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源:2016-2017学年山西忻州一中高一上学期新生摸底数学试卷(解析版) 题型:解答题

如图,抛物线轴交于两点,直线轴交于点,与轴交于点,点轴上方的抛物线上一动点,过点轴于点,交直线于点.设点的横坐标为

(1)求抛物线的解析式;

(2)若,求的值;

(3)若点是点关于直线的对称点、是否存在点,使点落在轴上?若存在,请直接写出相应的点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线x=-1的一个交点的纵坐标为y0,若|y0|<2,则双曲线C的离心率的取值范围是(  )
A.(1,$\sqrt{3}$)B.(1,$\sqrt{5}$)C.($\sqrt{3}$,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.正三角形ABC的边长为1,向量$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,且0≤x,y≤1,$\frac{1}{2}$≤x+y≤1,则动点P的轨迹所形成的面积为$\frac{3\sqrt{3}}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,M是以A、B为焦点的双曲线x2-y2=2右支上任一点,若点M到点C(3,1)与点B的距离之和为S,则S的取值范围是(  )
A.[$\sqrt{26}$+$\sqrt{2}$,+∞)B.[$\sqrt{26}$-$2\sqrt{2}$,+∞)C.[$\sqrt{26}$-$2\sqrt{2}$,$\sqrt{26}$+$2\sqrt{2}$)D.[$\sqrt{26}$-$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知△ABC的内切圆与边AB,AC,BC相切于点P,Q,R,若|CR|=1,|AB|=2,则动点C的轨迹曲线的离心率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

同步练习册答案