精英家教网 > 高中数学 > 题目详情
19.随机采访50名观众对某电视节目的满意度,得到如下列联表:单位:人
满意不满意合计
102030
15520
合计252550
附表和公式如下:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.根据以上数据可知(  )
A.有95%的把握认为对电视节目的满意度与性别无关
B.有99%的把握认为对电视节目的满意度与性别无关
C.有99%的把握认为对电视节目的满意度与性别有关
D.有95%的把握认为对电视节目的满意度与性别有关

分析 根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.

解答 解:K2=$\frac{50(10×5-20×15)^{2}}{25×25×30×20}$≈8.333>6.635,
∴这个结论有0.010的机会出错,
即有99%的把握认为对电视节目的满意度与性别有关,
故选:C.

点评 本题考查了独立性检验的应用问题,也考查了对观测值表的认识与应用,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知在等差数列{an}中,a3=5,a1+a19=-18
(1)求公差d及通项an
(2)求数列 {an}的前n项和Sn及使得Sn的值取最大时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}前n项和为${S_n}=2-5+8-11+14-17+…+{(-1)^{n-1}}(3n-1)$,则S15+S22-S31的值是(  )
A.-57B.-37C.16D.57

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.将圆C1:x2+y2=4上每一点的纵坐标保持不变,横坐标变为原来的$\sqrt{5}$倍得到曲线C2
(1)写出C2的参数方程;
(2)已知F(-4,0),直线l的参数方程为$\begin{array}{l}\left\{\begin{array}{l}x=-4+\sqrt{2}t\\ y=\sqrt{2}t\end{array}\right.\end{array}$(t为参数),直线l交曲线C2于A,B两点,求|AF|+|BF|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知角α终边经过点P(-3,-4),求sinα,cosα,tanα的值?
(2)已知角α是第二象限角,且$sinα=\frac{3}{5}$,求cosα,tanα的值?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.毎袋食品内有3张画中的一种,购买5袋这种食品,能把三张画收集齐全的概率是$\frac{2}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知抛物线C:y2=2px(p>0),焦点为F,过点G(p,0)任作直线l交抛物线C于A,M两点,设A(x1,y1),M(x2,y2).
(1)证明:y1y2为常数,并求当y1y2=-8时抛物线C的方程;
(2)若直线AF与x轴不垂直,直线AF交抛物线C于另一点B,直线BG交抛物线C于另一点N.求证:直线AB与直线MN斜率之比为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个扇形的圆心角为$\frac{2π}{3}$,半径为$\sqrt{3}$,则此扇形的面积为(  )
A.πB.$\frac{5π}{4}$C.$\frac{{\sqrt{3}π}}{3}$D.$\frac{{2\sqrt{3}}}{9}{π^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果有穷数列a1,a2,…am(m为正整数)满足条件:a1=am,a2=am-1,…am=a1,则称其为“对称数列”.例如数列1,2,5,2,1与数列8,4,2,4,8都是“对称数列”.已知在21项的“对称数列”{cn}中,c11,c12,…,c21是以1为首项,2为公差的等差数列,则c2=(  )
A.21B.1C.3D.19

查看答案和解析>>

同步练习册答案