精英家教网 > 高中数学 > 题目详情
18.已知$\sqrt{3}$sinα+cosα=m,其中$α∈(0,\frac{π}{2})$,则实数m的取值范围是(1,2].

分析 把已知等式的左边提取2后,利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的值域,得到左边式子的范围,进而列出关于m的不等式,求出不等式的解集即可得到m的范围.

解答 解:∵已知$\sqrt{3}$sinα+cosα=m,∴2sin(α+$\frac{π}{6}$)=m,∴sin(α+$\frac{π}{6}$)=$\frac{m}{2}$,
∵其中$α∈(0,\frac{π}{2})$,∴α+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{2π}{3}$),∴sin(α+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
即$\frac{m}{2}$∈($\frac{1}{2}$,1],∴1<m≤2,
则实数m的取值范围是(1,2].

点评 此题考查了两角和与差的正弦函数公式,正弦函数的值域,以及特殊角的三角函数值,解题思路为:利用三角函数的恒等变换把已知等式左边化为一个角的正弦函数,根据正弦函数的值域列出不等式来解决问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.在△ABC中,内角A,B,C所对的边分别为a,b,c,A=$\frac{π}{4}$,b2-a2=c2,则tan C等于(  )
A.1B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是某空间几何体的三视图,则该几何体的体积为(  )
A.2B.$\frac{2}{3}$C.4D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c分别为△ABC三个内角A,B,C的对边,$asinC-\sqrt{3}ccosA=0$.
(1)求角A;
(2)若a=2,△ABC的面积为$\sqrt{3}$,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(文科)sin42°cos18°-cos138°cos72°=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2x3-3ax2,a∈R.
(1)若a=2,求曲线f(x)在x=1处的切线方程;
(2)对任意的x1∈[0,2],总存在x2∈[0,1],使得f(x1)≥f'(x2)(其中f'(x)为函数f(x)的导数)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.两条直线l1:2x+y+c=0,l2:x-2y+1=0的位置关系是(  )
A.平行B.垂直C.重合D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.第十二届全运会将在沈阳市举行.若将6名志愿者每2人一组,分派到3个不同的场馆,且甲、乙两人必须同组,则不同的分配方案有18种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中既是奇函数又是最小正周期为π的函数的是(  )
A.y=|sinx|B.$y=cos({2x+\frac{π}{2}})$C.y=sin2x+cos2xD.y=sinx-cosx

查看答案和解析>>

同步练习册答案