分析 把已知等式的左边提取2后,利用特殊角的三角函数值及两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的值域,得到左边式子的范围,进而列出关于m的不等式,求出不等式的解集即可得到m的范围.
解答 解:∵已知$\sqrt{3}$sinα+cosα=m,∴2sin(α+$\frac{π}{6}$)=m,∴sin(α+$\frac{π}{6}$)=$\frac{m}{2}$,
∵其中$α∈(0,\frac{π}{2})$,∴α+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{2π}{3}$),∴sin(α+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
即$\frac{m}{2}$∈($\frac{1}{2}$,1],∴1<m≤2,
则实数m的取值范围是(1,2].
点评 此题考查了两角和与差的正弦函数公式,正弦函数的值域,以及特殊角的三角函数值,解题思路为:利用三角函数的恒等变换把已知等式左边化为一个角的正弦函数,根据正弦函数的值域列出不等式来解决问题,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -2 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{2}{3}$ | C. | 4 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=|sinx| | B. | $y=cos({2x+\frac{π}{2}})$ | C. | y=sin2x+cos2x | D. | y=sinx-cosx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com