精英家教网 > 高中数学 > 题目详情
15.如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,AA1=2,AC=2$\sqrt{2}$,M是CC1的中点,P是AM的中点,点Q在线段BC1上,且BQ=$\frac{1}{3}$QC1
(1)证明:PQ∥平面ABC;
(2)若直线BA1与平面ABM成角的正弦值为$\frac{2\sqrt{15}}{15}$,求∠BAC的大小.

分析 (1)设AB=a,BC=b,以B为坐标原点建立坐标系,则$\overrightarrow{B{B}_{1}}$为平面ABC的一个法向量,求出$\overrightarrow{PQ}$,$\overrightarrow{B{B}_{1}}$的坐标,通过证明$\overrightarrow{PQ}•\overrightarrow{B{B}_{1}}$=0得出PQ∥平面ABC;
(2)求出$\overrightarrow{B{A}_{1}}$和平面ABM的法向量$\overrightarrow{n}$,令|cos<$\overrightarrow{B{A}_{1}}$,$\overrightarrow{n}$>|=$\frac{2\sqrt{15}}{15}$得出a,b的关系,结合a2+b2=8得出a,b的值,从而确定∠BAC的大小.

解答 证明:(1)分别以BA,BC,BB1为x轴,y轴,z轴建立空间直角坐标系B-xyz,如图所示:
设AB=a,BC=b,则A(a,0,0),B(0,0,0),M(0,b,1),C1(0,b,2).
∴P($\frac{a}{2}$,$\frac{b}{2}$,$\frac{1}{2}$),Q(0,$\frac{b}{4}$,$\frac{1}{2}$).∴$\overrightarrow{PQ}$=(-$\frac{a}{2}$,-$\frac{b}{4}$,0).
∵BB1⊥平面ABC,∴$\overrightarrow{B{B}_{1}}$=(0,0,2)为平面ABC的一个法向量.
∵$\overrightarrow{PQ}•\overrightarrow{B{B}_{1}}$=0,PQ?平面ABC,
∴PQ∥平面ABC.
(2)A1(a,0,2),$\overrightarrow{B{A}_{1}}$=(a,0,2),$\overrightarrow{BA}$=(a,0,0),$\overrightarrow{BM}$=(0,b,1),
设平面ABM的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BA}=0}\\{\overrightarrow{n}•\overrightarrow{BM}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{ax=0}\\{by+z=0}\end{array}\right.$,令z=1得$\overrightarrow{n}$=(0,-$\frac{1}{b}$,1).
∴cos<$\overrightarrow{B{A}_{1}}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{B{A}_{1}}•\overrightarrow{n}}{|\overrightarrow{B{A}_{1}}||\overrightarrow{n}|}$=$\frac{2}{\sqrt{{a}^{2}+4}\sqrt{\frac{1}{{b}^{2}}+1}}$=$\frac{2\sqrt{15}}{15}$.
∴(a2+4)($\frac{1}{{b}^{2}}+1$)=15.
∵AC=2$\sqrt{2}$,∴a2=8-b2.∴(12-b2)($\frac{1}{{b}^{2}}+1$)=15.
解得b=$\sqrt{2}$.∴sin∠BAC=$\frac{BC}{AC}$=$\frac{1}{2}$.
∴∠BAC=30°.

点评 本题考查了线面平行的判定,空间向量的应用,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=(ax+1)e-x(a∈R)
(Ⅰ)当a>0时,求f(x)的单调递增区间;
(Ⅱ)对任意x∈[0,+∞),f(x)≤x+1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线l1:y=k(x+1)-1(k∈R)
(Ⅰ)证明:直线l1过定点;
(Ⅱ)若直线l1与直线l2:3x-(k-2)y+2=0平行,求k的值并求此时两直线间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tanα=2,求:
(1)$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)}$;
(2)2sin2α-3sinαcosα-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15$\sqrt{6}$km后,看见灯塔在正西方向,则这时船与灯塔的距离是(  )
A.15$\sqrt{3}$kmB.30kmC.15kmD.15$\sqrt{2}$km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若点P(sinα,tanα)在第三象限,则角α是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.将函数f(x)=cos(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象上的每一点的纵坐标不变,横坐标缩短为原来的一半,再将图象向右平移$\frac{π}{6}$个单位长度得到函数y=sinx的图象.
(1)直接写出f(x)的表达式,并求出f(x)在[0,π]上的值域;
(2)求出f(x)在[0,π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知A,B,C三点都在以O为球心的球面上,OA,OB,OC两两垂直,三棱锥O-ABC的体积为$\frac{4}{3}$,则球O的表面积为(  )
A.$\frac{16π}{3}$B.16πC.$\frac{32π}{3}$D.32π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=cos(x-$\frac{π}{3}$)(x∈[$\frac{π}{6}$,$\frac{2}{3}$π])的最大值是1,最小值是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案