精英家教网 > 高中数学 > 题目详情
4.已知A,B,C三点都在以O为球心的球面上,OA,OB,OC两两垂直,三棱锥O-ABC的体积为$\frac{4}{3}$,则球O的表面积为(  )
A.$\frac{16π}{3}$B.16πC.$\frac{32π}{3}$D.32π

分析 设球O的半径为R,则OA=OB=OC=R,所以三棱锥O-ABC的体积为$\frac{1}{6}{R^3}$,利用三棱锥O-ABC的体积为$\frac{4}{3}$,求出R,即可求出球O的表面积.

解答 解:设球O的半径为R,则OA=OB=OC=R,
所以三棱锥O-ABC的体积为$\frac{1}{6}{R^3}$.
由$\frac{1}{6}{R^3}=\frac{4}{3}$,解得R=2.
故球O的表面积为16π.
故选:B.

点评 本题考查球的表面积的求法,球的内含体与三棱锥的关系,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S-ABCD,该四棱锥的体积为$\frac{4\sqrt{2}}{3}$,则该四棱锥的外接球的体积为(  )
A.$\frac{4\sqrt{2}}{3}$πB.$\frac{8\sqrt{2}}{3}$πC.$\frac{32\sqrt{2}}{3}$πD.$\frac{64\sqrt{2}}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,AA1=2,AC=2$\sqrt{2}$,M是CC1的中点,P是AM的中点,点Q在线段BC1上,且BQ=$\frac{1}{3}$QC1
(1)证明:PQ∥平面ABC;
(2)若直线BA1与平面ABM成角的正弦值为$\frac{2\sqrt{15}}{15}$,求∠BAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.两平行平面截半径为13的球O所得两截面圆分别记为⊙O1、⊙O2,若⊙O1、⊙O2的面积分别为25π、144π,则|O1O2|=7或17.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的表面积为(  )
A.21πB.24πC.28πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a>0,b>0,求证:$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$≥$\frac{(x+y)^{2}}{a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知PC为球O的直径,A、B是球面上两点,且AB=2,∠APC=∠BPC=$\frac{π}{4}$,若球O的表面积是16π,则三棱锥P-ABC的体积是(  )
A.$\frac{4\sqrt{3}}{3}$B.$4\sqrt{3}$C.$\frac{{2\sqrt{3}}}{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.tan240°+sin(-420°)的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{3\sqrt{3}}}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$-\frac{{3\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(a-$\frac{1}{2}$)x2+lnx,g(x)=f(x)-2ax(a∈R).
(1)当a=0时,求f(x)在区间[$\frac{1}{e}$,e]上的最大值和最小值;
(2)若对?x∈(1,+∞),g(x)<0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案