精英家教网 > 高中数学 > 题目详情
10.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15$\sqrt{6}$km后,看见灯塔在正西方向,则这时船与灯塔的距离是(  )
A.15$\sqrt{3}$kmB.30kmC.15kmD.15$\sqrt{2}$km

分析 做出示意图,利用正弦定理求出.

解答 解设船开始位置为A,最后位置为C,灯塔位置为B,
则∠BAC=30°,∠ABC=120°,AC=15$\sqrt{6}$,
由正弦定理得$\frac{AC}{sinB}=\frac{BC}{sin∠BAC}$,即$\frac{15\sqrt{6}}{\frac{\sqrt{3}}{2}}=\frac{BC}{\frac{1}{2}}$,
解得BC=15$\sqrt{2}$.
故选:D.

点评 本题考查了正弦定理,解三角形的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(-2,1),$\overrightarrow{c}$=(-1,6).
(1)若($\overrightarrow{a}$+k$\overrightarrow{c}$)∥$\overrightarrow{b}$,求实数k的值;
(2)求满足$\overrightarrow{c}$=m$\overrightarrow{a}$+n$\overrightarrow{b}$的实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=f(x)的图象向右平移$\frac{π}{2}$单位得到函数y=cos2x的图象,则f(x)=(  )
A.-sin2xB.cos2xC.sin2xD.-cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题正确的是(  )
A.向量$\overrightarrow{a}$与$\overrightarrow{b}$不共线,则$\overrightarrow{a}$与$\overrightarrow{b}$都是非零向量
B.任意两个相等的非零向量的始点与终点是一平行四边形的四个顶点
C.$\overrightarrow{a}$与$\overrightarrow{b}$共线,$\overrightarrow{b}$与$\overrightarrow{c}$共线,则$\overrightarrow{a}$与$\overrightarrow{c}$也共线
D.有相同起点的两个非零向量不平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定义在R上的函数f(x)=a-$\frac{1}{{{2^x}+1}}$是奇函数,其中a为实数.
(Ⅰ)求实数a的值;
(Ⅱ)求函数f(x)的值域;
(Ⅲ)当m+n≠0时,比较$\frac{f(m)+f(n)}{{{m^3}+{n^3}}}$与f(0)的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,AA1=2,AC=2$\sqrt{2}$,M是CC1的中点,P是AM的中点,点Q在线段BC1上,且BQ=$\frac{1}{3}$QC1
(1)证明:PQ∥平面ABC;
(2)若直线BA1与平面ABM成角的正弦值为$\frac{2\sqrt{15}}{15}$,求∠BAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,输出的S的值为(  )  
A.-$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的表面积为(  )
A.21πB.24πC.28πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.焦点在x轴上,且焦点到准线的距离是2的抛物线的标准方程是(  )
A.y2=8x或y2=-8xB.x2=8y或x=-8yC.x2=4y或x2=-4yD.y2=4x或y2=-4x

查看答案和解析>>

同步练习册答案