精英家教网 > 高中数学 > 题目详情
5.已知定义在R上的函数f(x)=a-$\frac{1}{{{2^x}+1}}$是奇函数,其中a为实数.
(Ⅰ)求实数a的值;
(Ⅱ)求函数f(x)的值域;
(Ⅲ)当m+n≠0时,比较$\frac{f(m)+f(n)}{{{m^3}+{n^3}}}$与f(0)的大小并证明.

分析 (Ⅰ)利用函数是奇函数,结合f(0)=0,解方程即可求实数a的值;
(Ⅱ)结合方式函数的性质即可求函数f(x)的值域;
(Ⅲ)利用定义法判断函数的单调性,结合函数奇偶性和单调性的关系即可证明当m+n≠0时,比较$\frac{f(m)+f(n)}{{{m^3}+{n^3}}}$与f(0)的大小关系.

解答 解:(Ⅰ)∵函数$f(x)=a-\frac{1}{{{2^x}+1}}$在R上是奇函数,
∴f(0)=0,即$a-\frac{1}{{{2^0}+1}}=0$,
∴$a=\frac{1}{2}$;
(Ⅱ)由(Ⅰ)知$f(x)=\frac{1}{2}-\frac{1}{{{2^x}+1}}$,
∵2x+1>1,
∴0<$\frac{1}{{2}^{x}+1}$<1,
∴-1<-$\frac{1}{{2}^{x}+1}$<0,则$-\frac{1}{2}$<$\frac{1}{2}$-$\frac{1}{{2}^{x}+1}$<$\frac{1}{2}$,
即$-\frac{1}{2}<y<\frac{1}{2}$,
所以函数f(x)的值域为$(-\frac{1}{2},\frac{1}{2})$;
(Ⅲ)当m+n≠0时,$\frac{f(m)+f(n)}{{{m^3}+{n^3}}}>f(0)$.
设x1,x2∈R,且x1<x2
$f({x_2})-f({x_1})=(\frac{1}{2}-\frac{1}{{{2^{x_2}}+1}})-(\frac{1}{2}-\frac{1}{{{2^{x_1}}+1}})=\frac{{{2^{x_2}}-{2^{x_1}}}}{{({2^{x_2}}+1)({2^{x_1}}+1)}}$
∵x1<x2
∴${2^{x_2}}-{2^{x_1}}>0,({2^{x_2}}+1)({2^{x_1}}+1)>0$,
∴$\frac{{{2^{x_2}}-{2^{x_1}}}}{{({2^{x_2}}+1)({2^{x_1}}+1)}}>0$
即f(x2)-f(x1)>0,
所以函数$f(x)=\frac{1}{2}-\frac{1}{{{2^x}+1}}$在R上是单调递增,
①若m+n>0,即m>-n,所以f(m)>f(-n),m3>(-n)3
又因为$f(x)=\frac{1}{2}-\frac{1}{{{2^x}+1}}$在R上是奇函数,
所以f(-n)=-f(n),f(m)+f(n)>0,m3+n3>0
所以$\frac{f(m)+f(n)}{{{m^3}+{n^3}}}>0$,
又因为f(0)=0,所以$\frac{f(m)+f(n)}{{{m^3}+{n^3}}}>f(0)$;
②若m+n<0,即m<-n,
所以f(m)<f(-n),m3<(-n)3
又因为$f(x)=\frac{1}{2}-\frac{1}{{{2^x}+1}}$在R上是奇函数,
所以f(-n)=-f(n),f(m)+f(n)<0,m3+n3<0
所以$\frac{f(m)+f(n)}{{{m^3}+{n^3}}}>0$,
又因为f(0)=0,
所以$\frac{f(m)+f(n)}{{{m^3}+{n^3}}}>f(0)$.
综上所述:当m+n≠0时,$\frac{f(m)+f(n)}{{{m^3}+{n^3}}}>f(0)$.

点评 本题主要考查函数奇偶性和单调性的应用,结合分式函数的性质是解决本题的关键.考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知θ角的终边与480°角的终边关于x轴对称,点P(x,y)在θ角的终边上(不是原点),则$\frac{xy}{{x}^{2}+{y}^{2}}$的值等于$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线方程:x2-$\frac{y^2}{3}$=1,则以A(2,1)为中点的弦所在直线l的方程是(  )
A.6x+y-11=0B.6x-y-11=0C.x-6y-11=0D.x+6y+11=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在等差数列{an}中,我们有$\frac{{{a_1}+{a_2}+{a_3}+{a_4}+{a_5}+{a_6}}}{6}$=$\frac{{{a_3}+{a_4}}}{2}$,则在正项等比数列{bn}中,我们可以得到类似的结论是$\root{6}{{{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}}}=\sqrt{{a_3}{a_4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=sinωx(ω>0)的一段图象如图所示,△ABC的顶点A与坐标原点重合,B是f(x)的图象上一个最低点,C在x轴上,若内角A,B,C所对边长分别为a,b,c,且△ABC的面积满足S=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{12}$,将f(x)的图象向右平移一个单位得到g(x)的图象,则g(x) 的表达式为-cos($\frac{π}{2}$x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行15$\sqrt{6}$km后,看见灯塔在正西方向,则这时船与灯塔的距离是(  )
A.15$\sqrt{3}$kmB.30kmC.15kmD.15$\sqrt{2}$km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下面使用类比推理正确的是(  )
A.直线a,b,c,若a∥b,b∥c,则a∥c,类推出:向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,若$\overrightarrow a$∥$\overrightarrow b$,$\overrightarrow b$∥$\overrightarrow c$,则$\overrightarrow a$∥$\overrightarrow c$
B.同一平面内,直线a,b,c,若a⊥c,b⊥c,则a∥b,类推出:空间中,直线a,b,c,若a⊥c,b⊥c,则a∥b
C.实数a,b,若方程x2+ax+b=0有实数根,则a2≥4b,类推出:复数a,b,若方程x2+ax+b=0有实数根,则a2≥4b
D.由向量加法的几何意义,可以类比得到复数加法的几何意义

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=cosx+$\frac{a}{2}$x2-1(a∈R).
(1)证明:当a≥1时,f(x)有唯一的零点;
(2)若f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.角α的终边经过点(4,3),角β的终边经过点(-7,-1),则sin(α+β)=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案