| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
分析 设出椭圆的焦点坐标,令x=c,求得|PF2|=$\frac{{b}^{2}}{a}$,由椭圆的定义可得,|PF1|=2a-$\frac{{b}^{2}}{a}$,在直角△PF1F2中,运用面积相等,可得内切圆的半径r,由条件化简整理,结合离心率公式,计算即可得到所求值.
解答 解:由椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两焦点为F1(-c,0),F2(c,0),
P为椭圆C上一点,且PF2⊥x轴,
可得|F1F2|=2c,由x=c,可得y=±b$\sqrt{1-\frac{{c}^{2}}{{a}^{2}}}$=±$\frac{{b}^{2}}{a}$,
即有|PF2|=$\frac{{b}^{2}}{a}$,
由椭圆的定义可得,|PF1|=2a-$\frac{{b}^{2}}{a}$,
在直角△PF1F2中,$\frac{1}{2}$|PF2|•|F1F2|=$\frac{1}{2}$r(|F1F2|+|PF1|+|PF2|),
可得△PF1F2的内切圆半径r=$\frac{\frac{{b}^{2}}{a}•2c}{2a+2c}$=$\frac{1}{2}$c,
即有2b2=2(a2-c2)=a(a+c),
整理,得a=2c,
椭圆C的离心率为e=$\frac{c}{a}$=$\frac{1}{2}$.
故选:B.
点评 本题考查椭圆的离心率的求法,注意运用椭圆的定义和三角形的内切圆的半径的求法,考查化简整理的运算能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若x,y∈R,x,y全不为0,则x2+y2≠0 | B. | 若x,y∈R,x,y不全为0,则x2+y2=0 | ||
| C. | 若x,y∈R,x,y不全为0,则x2+y2≠0 | D. | 若x,y∈R,x,y全为0,则x2+y2≠0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ±1 | B. | 1 | C. | -1 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com