精英家教网 > 高中数学 > 题目详情
11.利用函数单调性定义证明函数f(x)=2-$\frac{1}{x}$在(0,+∞)上为增函数.

分析 取x1,x2,为(1,+∞)上的任意两个数,且x1<x2,作差并判断f(x1)与f(x2)的大小,再由函数单调性的定义,可判断函数的单调性.

解答 证明:设 x1,x2∈(1,+∞),且x1<x2
则  f(x1)-f(x2)=$\frac{{x}_{1}-{x}_{2}}{{x}_{1}{x}_{2}}$
∵x1,x2∈(1,+∞)∴x1x2>0
∵x1<x2
∴x1-x2<0
∴$\frac{{x}_{1}-{x}_{2}}{{x}_{1}{x}_{2}}$<0,∴f(x1)-f(x2)<0
即f(x1)<f(x2
∴函数f(x)在(1,+∞)上为增函数.

点评 本题考查的知识点函数单调性的判断与证明,熟练掌握定义法(作差法)证明函数单调性的方法和步骤是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知直线l过直线3x+4y-5=0和2x+y=0的交点且与直线3x-2y-1=0垂直.
(1)求l的方程;
(2)求直线l的横截距和纵截距.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(Ⅰ)求值:(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-(${\frac{49}{9}}$)0.5+(0.008)${\;}^{-\frac{2}{3}}}$×$\frac{2}{25}$;
(Ⅱ)已知二次函数f(x)满足f(x+1)+f(x-1)=x2-4x,试求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$x3-ax+1.
(1)当a=1时,求f(x)在x=0处的切线方程;
(2)若f(x)在[0,1]上的最小值为$\frac{11}{12}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知两个等差数列{an},{bn},它们的前n项和分别为Sn,S'n,若$\frac{S_n}{{{{S'}_n}}}=\frac{2n+3}{3n-1}$,则$\frac{a_9}{b_9}$=$\frac{37}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为(  )  (注:1丈=10尺=100寸,π≈3.14,sin22.5°≈$\frac{5}{13}$)
A.600立方寸B.610立方寸C.620立方寸D.633立方寸

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知曲线C1的极坐标方程ρ=2sinθ,曲线C2的参数方程$\left\{\begin{array}{l}{x=3+2t}\\{y=t}\end{array}\right.$
(Ⅰ)把曲线C1,C2的方程为普通方程;
(Ⅱ)在曲线C1上取一点A,在曲线C2上取一点B,求线段AB的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C所对边分别为a,b,c,若B=30°,b=2,c=2$\sqrt{3}$,则角C=(  )
A.60°或120°B.60°C.30°或150°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x3-2x2+1.
(1)f(x)在区间[-1,1]上的最大值;
(2)若函数g(x)=f(x)-mx区间[-2,2]上存在递减区间,求实数m的取值范围.

查看答案和解析>>

同步练习册答案