精英家教网 > 高中数学 > 题目详情
16.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为(  )  (注:1丈=10尺=100寸,π≈3.14,sin22.5°≈$\frac{5}{13}$)
A.600立方寸B.610立方寸C.620立方寸D.633立方寸

分析 由题意画出图形,求出圆柱的底面半径,进一步求出弓形面积,代入体积公式得答案.

解答 解:如图,
AB=10(寸),则AD=5(寸),CD=1(寸),
设圆O的半径为x(寸),则OD=(x-1)(寸),
在Rt△ADO中,由勾股定理可得:52+(x-1)2=x2,解得:x=13(寸).
∴sin∠AOD=$\frac{AD}{AO}=\frac{5}{13}$,即∠AOD≈22.5°,则∠AOB=45°.
则弓形$\widehat{ACB}$的面积S=$\frac{1}{2}×\frac{π}{4}×1{3}^{2}-\frac{1}{2}×10×12$≈6.33(平方寸).
则算该木材镶嵌在墙中的体积约为V=6.33×100=633(立方寸).
故选:D.

点评 本题考查棱柱、棱锥、棱台体积的求法,关键是对题意的理解,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.甲、乙两地准备开通全线长1750km的高铁.已知运行中高铁每小时所需的能源费用W(万元)和速度V(km/h)的立方成正比,当速度为100km/h时,能源费用是每小时0.06万元,其余费用(与速度无关)是每小时3.24万元,已知最大速度不超过C(km/h)(C为常数,0<C≤400).
(1)求高铁运行全程所需的总费用y与列车速度v的函数关系;
(2)当高铁速度为多少时,运行全程所需的总费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.将函数y=sin(2x-$\frac{π}{6}}$)的图象向左平移$\frac{π}{4}$个单位,所得函数图象的解析式为y=f(x),则f(0)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α的终边上有一点P(1,3),则$\frac{sin(π-α)-sin(\frac{π}{2}+α)}{cos(\frac{3π}{2}-α)+2cos(-π+α)}$的值为-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.利用函数单调性定义证明函数f(x)=2-$\frac{1}{x}$在(0,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=|ln(x-1)|,若f(a)=f(b),则a+2b的取值范围为(  )
A.(4,+∞)B.$[3+2\sqrt{2}\;\;,\;\;+∞)$C.[6,+∞)D.$(4\;\;,\;\;3+2\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x<0}\\{{e}^{x},x≥0}\end{array}\right.$,则函数g(x)=f(x)-x-3的零点有2 个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某制造商为运动会生产一批直径为40mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:
40.0240.0039.9840.0039.99
40.0039.9840.0139.9839.99
40.0039.9939.9540.0140.02
39.9840.0039.9940.0039.96
(Ⅰ)完成下面的频率分布表,并画出频率分布直方图;
分组频数频率$\frac{频率}{组距}$
[39.95,39.97)2
[39.97,39.99)4
[39.99,40.01)10
[40.01,40.03]4
合计
(Ⅱ)假定乒乓球的直径误差不超过0.02mm为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,A,B,C三地有直道相通,AB=10 千米,AC=6 千米,BC=8千米.现甲、乙两人同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是AB,速度为10千米/小时,乙的路线是ACB,速度为16千米/小时.乙到达B地后原地等待.设t=t1时乙到达C地.
(1)求t1与f(t1) 的值;
(2)已知对讲机的有效通话距离是3千米,当t1≤t≤1时,求f(t)的表达式,并判断f(t) 在[t1,1]上的最大值是否超过3?说明理由.

查看答案和解析>>

同步练习册答案