| A. | (4,+∞) | B. | $[3+2\sqrt{2}\;\;,\;\;+∞)$ | C. | [6,+∞) | D. | $(4\;\;,\;\;3+2\sqrt{2}]$ |
分析 根据函数的解析式德,得到b=$\frac{1}{a-1}$+1,再利用基本不等式即可求出2a+b的范围
解答 解:∵函数f(x)=|ln(x-1)|,f(a)=f(b),且x>1,
∴-ln(a-1)=ln(b-1),
∴$\frac{1}{a-1}$=b-1,
∴b=$\frac{1}{a-1}$+1,
∴a+2b=a+$\frac{2}{a-1}$+2=a-1+$\frac{2}{a-1}$+3≥3+2$\sqrt{(a-1)•\frac{2}{a-1}}$=3+2$\sqrt{2}$,当且仅当a=$\sqrt{2}$+1取等号,
∴a+2b的取值范围是[3+2$\sqrt{2}$,+∞)
故选:B
点评 本题考查了函数的图象和基本不等式,对数函数的性质,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 600立方寸 | B. | 610立方寸 | C. | 620立方寸 | D. | 633立方寸 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com