精英家教网 > 高中数学 > 题目详情
13.已知某几何体的正视图、侧视图都是直角三角形,俯视图是矩形(尺寸如图所示).
(1)作出该几何体的直观图;
(2)求该几何体的体积V.

分析 (1)由已知中的三视图,可得该几何体的直观图;
(2)该几何体是四棱锥,求出底面面积和高,代入体积公式,可得答案.

解答 解:(1)该几何体的直观图如图:

┅┅┅┅┅┅┅┅┅(5分)
(Ⅱ)该几何体是四棱锥,
其底面的面积:S=6×8=48┅┅┅┅┅┅┅┅┅(7分)
高h=6┅┅┅┅┅┅┅(8分)
则体积V=$\frac{1}{3}Sh$=$\frac{1}{3}×48×6$=96┅┅┅┅┅┅┅┅┅┅(10分)

点评 本题考查的知识点是棱锥的体积和表面积,简单几何体的三视图和直观图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.若线性回归方程为y=2-3.5x,则变量x增加一个单位,变量y平均(  )
A.减少3.5个单位B.增加2个单位C.增加3.5个单位D.减少2个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知角α的终边上有一点P(1,3),则$\frac{sin(π-α)-sin(\frac{π}{2}+α)}{cos(\frac{3π}{2}-α)+2cos(-π+α)}$的值为-$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=|ln(x-1)|,若f(a)=f(b),则a+2b的取值范围为(  )
A.(4,+∞)B.$[3+2\sqrt{2}\;\;,\;\;+∞)$C.[6,+∞)D.$(4\;\;,\;\;3+2\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x,x<0}\\{{e}^{x},x≥0}\end{array}\right.$,则函数g(x)=f(x)-x-3的零点有2 个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)是R上的奇函数,且当x∈(0,+∞)时,f(x)=x(1+x3)-1,求f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某制造商为运动会生产一批直径为40mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:
40.0240.0039.9840.0039.99
40.0039.9840.0139.9839.99
40.0039.9939.9540.0140.02
39.9840.0039.9940.0039.96
(Ⅰ)完成下面的频率分布表,并画出频率分布直方图;
分组频数频率$\frac{频率}{组距}$
[39.95,39.97)2
[39.97,39.99)4
[39.99,40.01)10
[40.01,40.03]4
合计
(Ⅱ)假定乒乓球的直径误差不超过0.02mm为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知直线x+a2y+6=0与直线(a-2)x+3ay+2a=0平行,则a的值为0或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.“a=1”是“a2=1”成立的充分不必要条件.(在“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”中选一个合适的填空)充分不必要.

查看答案和解析>>

同步练习册答案