精英家教网 > 高中数学 > 题目详情
4.已知角α的终边上有一点P(1,3),则$\frac{sin(π-α)-sin(\frac{π}{2}+α)}{cos(\frac{3π}{2}-α)+2cos(-π+α)}$的值为-$\frac{2}{5}$.

分析 利用三角函数的定义可求得tanα,进而利用诱导公式化简所求即可得解.

解答 解:∵角α的终边上有一点P(1,3),则tanα=3
∴$\frac{sin(π-α)-sin(\frac{π}{2}+α)}{cos(\frac{3π}{2}-α)+2cos(-π+α)}$=$\frac{sinα-cosα}{-sinα-2cosα}$=$\frac{tanα-1}{-tanα-2}$=$\frac{3-1}{-3-2}$=-$\frac{2}{5}$.
故答案为:-$\frac{2}{5}$.

点评 本题主要考查任意角的三角函数的定义,同角三角函数基本关系式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某校高一年级共有320人,为调查高一年级学生每天晚自习自主支配学习时间(指除了完成老师布置的作业后学生根据自己的需要进行学习的时间)情况,学校采用随机抽样的方法从高一学生中抽取了n名学生进行问卷调查.根据问卷得到了这n名学生每天晚自习自主支配学习时间的数据(单位:分钟),按照以下区间分为七组:①[0,10),②[10,20),③[20,30),④[30,40),⑤[40,50),⑥[50,60),⑦[60,70),得到频率分布直方图如图.已知抽取的学生中每天晚自习自主支配学习时间低于20分钟的人数是4人.
(1)求n的值;
(2)利用频率分布直方图估计众数,中位数及平均数
(3)问卷调查完成后,学校从第3组和第4组学生中利用分层抽样的方法抽取7名学生进行座谈,了解各学科的作业布置情况,并从这7人中随机抽取两名学生聘为学情调查联系人.求第3组中至少有1名学生被聘为学情调查联系人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设P是平行四边形ABCD的对角线的交点,O为任一点,则$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$+$\overrightarrow{OD}$=(  )
A.$4\overrightarrow{OP}$B.$3\overrightarrow{OP}$C.$2\overrightarrow{OP}$D.$\overrightarrow{OP}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知一个三棱锥的体积和表面积分别为V,S,若V=2,S=3,则该三棱锥内切球的表面积是16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{1}{3}$x3-ax+1.
(1)当a=1时,求f(x)在x=0处的切线方程;
(2)若f(x)在[0,1]上的最小值为$\frac{11}{12}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知p:方程$\frac{{x}^{2}}{9-m}$+$\frac{{y}^{2}}{2m}$=1表示焦点在x轴上的椭圆,q:双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的离心率e∈($\frac{\sqrt{6}}{2}$,$\sqrt{2}$).
(1)若椭圆$\frac{{x}^{2}}{9-m}$+$\frac{{y}^{2}}{2m}$=1的焦点和双曲线$\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{m}$=1的顶点重合,求实数m的值;
(2)若“p∧q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.《九章算术》是我国古代著名数学经典.其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深一寸,锯道长一尺.问这块圆柱形木料的直径是多少?长为1丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).已知弦AB=1尺,弓形高CD=1寸,估算该木材镶嵌在墙中的体积约为(  )  (注:1丈=10尺=100寸,π≈3.14,sin22.5°≈$\frac{5}{13}$)
A.600立方寸B.610立方寸C.620立方寸D.633立方寸

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知某几何体的正视图、侧视图都是直角三角形,俯视图是矩形(尺寸如图所示).
(1)作出该几何体的直观图;
(2)求该几何体的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设数列{an}满足a2+a4=10,点Pn(n,an)对任意的n∈N*,都有向量$\overrightarrow{{P_n}{P_{n+1}}}=(1\;,\;3)$,则数列{an}的前n项和Sn=$\frac{3}{2}{n}^{2}$-$\frac{5}{2}$n.

查看答案和解析>>

同步练习册答案