6£®Èçͼ£¬A£¬B£¬CÈýµØÓÐÖ±µÀÏàͨ£¬AB=10 Ç§Ã×£¬AC=6 Ç§Ã×£¬BC=8ǧÃ×£®Ïּס¢ÒÒÁ½ÈËͬʱ´ÓAµØ³ö·¢ÔÈËÙǰÍùBµØ£¬¾­¹ýtСʱ£¬ËûÃÇÖ®¼äµÄ¾àÀëΪf£¨t£©£¨µ¥Î»£ºÇ§Ã×£©£®¼×µÄ·ÏßÊÇAB£¬ËÙ¶ÈΪ10ǧÃ×/Сʱ£¬ÒҵķÏßÊÇACB£¬ËÙ¶ÈΪ16ǧÃ×/Сʱ£®ÒÒµ½´ïBµØºóÔ­µØµÈ´ý£®Éèt=t1ʱÒÒµ½´ïCµØ£®
£¨1£©Çót1Óëf£¨t1£© µÄÖµ£»
£¨2£©ÒÑÖª¶Ô½²»úµÄÓÐЧͨ»°¾àÀëÊÇ3ǧÃ×£¬µ±t1¡Üt¡Ü1ʱ£¬Çóf£¨t£©µÄ±í´ïʽ£¬²¢ÅжÏf£¨t£© ÔÚ[t1£¬1]ÉϵÄ×î´óÖµÊÇ·ñ³¬¹ý3£¿ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃt1=$\frac{3}{8}$h£¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃf£¨t1£©=CD=$\sqrt{A{C}^{2}+A{D}^{2}-2AC•ADcosA}$=$\frac{3\sqrt{41}}{4}$£»
£¨2£©µ±t1=$\frac{3}{8}$¡Üt¡Ü$\frac{7}{8}$ʱ£¬ÓÉÒÑÖªÊý¾ÝºÍÓàÏÒ¶¨Àí¿ÉµÃf£¨t£©=PQ=2$\sqrt{2{5t}^{2}-42t+18}$£¬µ±$\frac{7}{8}$£¼t¡Ü1ʱ£¬f£¨t£©=10-10t£¬¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃt1=$\frac{3}{8}$h£¬¼ÇÒÒµ½Cʱ¼×ËùÔÚµØÎªD£¬ÔòAD=$\frac{15}{4}$£¨Ç§Ã×£©£®
ÔÚÈý½ÇÐÎACDÖУ¬ÓÉÓàÏÒ¶¨Àíf£¨t1£©=CD=$\sqrt{A{C}^{2}+A{D}^{2}-2AC•ADcosA}$=$\frac{3\sqrt{41}}{4}$£¨Ç§Ã×£©£®
£¨2£©¼×µ½´ïBÓÃʱ1Сʱ£¬ÒÒµ½´ïCÓÃʱ$\frac{3}{8}$Сʱ£¬´ÓAµ½B×ÜÓÃʱ$\frac{7}{8}$Сʱ£¬
µ±t1=$\frac{3}{8}$¡Üt¡Ü$\frac{7}{8}$ʱ£¬
f£¨t£©=$\sqrt{£¨14-16t£©^{2}+£¨10-10t£©^{2}-2£¨14-16t£©£¨10-10t£©•\frac{4}{5}}$=2$\sqrt{2{5t}^{2}-42t+18}$£¬
µ±$\frac{7}{8}$£¼t¡Ü1ʱ£¬f£¨t£©=10-10t£¬
¡àf£¨t£©=$\left\{\begin{array}{l}{2\sqrt{25{t}^{2}-42t+18}£¬\frac{3}{8}¡Üt¡Ü\frac{7}{8}}\\{10-10t£¬\frac{7}{8}£¼t¡Ü1}\end{array}\right.$£¬
ÒòΪf£¨t£©ÔÚ[$\frac{3}{8}$£¬$\frac{7}{8}$]ÉϵÄ×î´óÖµÊÇf£¨$\frac{3}{8}$£©=$\frac{3\sqrt{41}}{4}$£¬f£¨t£©ÔÚ[$\frac{7}{8}$£¬1]ÉϵÄ×î´óÖµÊÇf£¨$\frac{7}{8}$£©=$\frac{5}{4}$£¬
ËùÒÔf£¨t£©ÔÚ[$\frac{3}{8}$£¬1]ÉϵÄ×î´óÖµÊÇ$\frac{3\sqrt{41}}{4}$£¬³¬¹ý3£®

µãÆÀ ±¾Ì⿼²é½âÈý½ÇÐεÄʵ¼ÊÓ¦Óã¬Éæ¼°ÓàÏÒ¶¨ÀíºÍ·Ö¶Îº¯Êý£¬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®¡¶¾ÅÕÂËãÊõ¡·ÊÇÎÒ¹ú¹Å´úÖøÃûÊýѧ¾­µä£®ÆäÖжԹ´¹É¶¨ÀíµÄÂÛÊö±ÈÎ÷·½Ôçһǧ¶àÄ꣬ÆäÖÐÓÐÕâÑùÒ»¸öÎÊÌ⣺¡°½ñÓÐÔ²²ÄÂñÔÚ±ÚÖУ¬²»Öª´óС£®ÒÔ¾â¾âÖ®£¬ÉîÒ»´ç£¬¾âµÀ³¤Ò»³ß£®Îʾ¶¼¸ºÎ£¿¡±ÆäÒâΪ£º½ñÓÐÒ»Ô²ÖùÐÎľ²Ä£¬ÂñÔÚǽ±ÚÖУ¬²»ÖªÆä´óС£¬ÓþâÈ¥¾â¸Ã²ÄÁÏ£¬¾â¿ÚÉîÒ»´ç£¬¾âµÀ³¤Ò»³ß£®ÎÊÕâ¿éÔ²ÖùÐÎľÁϵÄÖ±¾¶ÊǶàÉÙ£¿³¤Îª1ÕɵÄÔ²ÖùÐÎľ²Ä²¿·ÖÏâǶÔÚǽÌåÖУ¬½ØÃæÍ¼ÈçͼËùʾ£¨ÒõÓ°²¿·ÖΪÏâǶÔÚǽÌåÄڵIJ¿·Ö£©£®ÒÑÖªÏÒAB=1³ß£¬¹­ÐθßCD=1´ç£¬¹ÀËã¸Ãľ²ÄÏâǶÔÚǽÖеÄÌå»ýԼΪ£¨¡¡¡¡£©  £¨×¢£º1ÕÉ=10³ß=100´ç£¬¦Ð¡Ö3.14£¬sin22.5¡ã¡Ö$\frac{5}{13}$£©
A£®600Á¢·½´çB£®610Á¢·½´çC£®620Á¢·½´çD£®633Á¢·½´ç

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®£¨1£©Óö¨ÒåÖ¤Ã÷º¯Êý£ºf£¨x£©=1-xÔÚ£¨-¡Þ£¬+¡Þ£©Îª¼õº¯Êý£®
£¨2£©ÒÑÖªº¯Êý£ºf£¨x£©=$\left\{\begin{array}{l}{x-1£¨x£¼1£©}\\{\frac{2}{x}£¨x£¾2£©}\end{array}\right.$£¬Çóf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÉèÊýÁÐ{an}Âú×ãa2+a4=10£¬µãPn£¨n£¬an£©¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐÏòÁ¿$\overrightarrow{{P_n}{P_{n+1}}}=£¨1\;£¬\;3£©$£¬ÔòÊýÁÐ{an}µÄǰnÏîºÍSn=$\frac{3}{2}{n}^{2}$-$\frac{5}{2}$n£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=x3-2x2+1£®
£¨1£©f£¨x£©ÔÚÇø¼ä[-1£¬1]ÉϵÄ×î´óÖµ£»
£¨2£©Èôº¯Êýg£¨x£©=f£¨x£©-mxÇø¼ä[-2£¬2]ÉÏ´æÔڵݼõÇø¼ä£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÒÑÖª¡÷ABCΪÈñ½ÇÈý½ÇÐΣ¬½Ç A£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇ a£¬b£¬c£¬ÆäÖРc=2£¬acosB+bcosA=$\frac{\sqrt{3}c}{2sinC}$£¬Ôò¡÷ABCÖܳ¤µÄȡֵ·¶Î§Îª£¨4£¬6]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÔ²C·½³ÌΪ£ºx2+y2=4£®
£¨1£©Ö±Ïßl¹ýµãP£¨1£¬2£©£¬ÇÒÓëÔ²C½»ÓÚA¡¢BÁ½µã£¬Èô$|AB|=2\sqrt{3}$£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©¹ýµãP£¨1£¬2£©×÷Ô²CµÄÇÐÏߣ¬ÉèÇеã·Ö±ðΪM£¬N£¬ÇóÖ±ÏßNM·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®´ÓÔ²x2+y2=4ÄÚÈÎȡһµãp£¬Ôòpµ½Ö±Ïßx+y=1µÄ¾àÀëСÓÚ$\frac{\sqrt{2}}{2}$µÄ¸ÅÂÊ$\frac{¦Ð+2}{4¦Ð}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®º¯Êýf£¨x£©=mx|x-a|-|x|+1£¬
£¨1£©Èôm=1£¬a=0£¬ÊÔÌÖÂÛº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£»
£¨2£©Èôa=1£¬ÇÒf£¨x£©ÓÐÇÒ½öÓÐÒ»¸öÁãµã£¬ÇómµÄȡֵ·¶Î§£»
£¨3£©Èôm=1£¬g£¨x£©=log2£¨4x£©•log2$\frac{4}{x}$£¬×Ü´æÔÚx1¡ÊR£¬¶ÔÈÎÒâx2¡Ê£¨0£¬+¡Þ£©ºãÓÐg£¨x2£©£¼f£¨x1£©-x12³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸