【题目】已知
对任意的实数
,
都有:
,且当
时,有
.
(1)求
;
(2)求证:
在
上为增函数;
(3)若
,且关于
的不等式
对任意的
恒成立,求实数
的取值范围.
【答案】(1)1;(2)证明见解析;(3)
.
【解析】
(1)在已知恒等式中令
可得;
(2)用增函数的定义可证;
(3)利用已知恒等式和
求得
,再将不等式
化为
后,利用单调性可化为
在
上恒成立,再利用二次函数的最值可解决.
(1)解:令
,则
,解得
.
(2)证明:设
是
上任意两个实数,且
,则
则![]()
![]()
所以
,
由
得
,所以
,
故
,即
,
所以
在
上为增函数.
(3)由已知条件有:
,
故原不等式可化为:
,
即
,
因为
,
所以
,
因为![]()
![]()
,
所以
,
故不等式可化为
.
由(2)可知
在
上为增函数,所以
,
即
在
上恒成立,
令
,即
成立即可,
(i)当
即
时,
在
上单调递增.
则
解得
,所以
,
(ii)当
,即
时,有
,
化简得:
,即
,
解得
,
而
,所以
,
综上所述:实数
的取值范围是![]()
.
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系
中,椭圆
的方程为
,以
为极点,
轴非负半轴为极轴,取相同的长度单位建立极坐标系,直线
的极坐标方程为
.
(1)求直线
的直角坐标方程和椭圆
的参数方程;
(2)设
为椭圆
上任意一点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为4,离心率为
.
(1)求椭圆
的标准方程;
(2)过右焦点
的直线
交椭圆于
两点,过点
作直线
的垂线,垂足为
,连接
,当直线
的倾斜角发生变化时,直线
与
轴是否相交于定点?若是,求出定点坐标,否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知表1和表2是某年部分日期的天安门广场升旗时刻表:
表1:某年部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:11 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:50 | 12月20日 | 7:31 |
表2:某年1月部分日期的天安门广场升旗时刻表
日期 | 升旗时刻 | 日期 | 升旗时刻 | 日期 | 升旗时刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率;
(2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记
为这两人中观看升旗的时刻早于7:00的人数,求
的 分布列和数学期望;
(3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为
),记表2中所有升旗时刻对应数据的方差为
,表1和表2中所有升旗时刻对应数据的方差为
,判断
与
的大小(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设m,n是两条不同直线,
,
,
是三个不同平面,给出下列四个命题:①若m⊥
,n⊥
,则m//n;②若
//
,
//
,m⊥
,则m⊥
;③若m//
,n//
,则m//n;④
⊥
,
⊥
,则
//
.其中正确命题的序号是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】销售甲、乙两种商品所得利润分别是
万元,它们与投入资金
万元的关系分别为
,
,(其中
都为常数),函数
对应的曲线
、
如图所示.
![]()
(1)求函数
与
的解析式;
(2)若该商场一共投资4万元经销甲、乙两种商品,求该商场所获利润的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知小明(如图中
所示)身高
米,路灯
高
米,
,
均垂直于水平地面,分别与地面交于点
,
.点光源从
发出,小明在地上的影子记作
.
![]()
![]()
(1)小明沿着圆心为
,半径为
米的圆周在地面上走一圈,求
扫过的图形面积;
(2)若
米,小明从
出发,以
米/秒的速度沿线段
走到
,
,且
米.
秒时,小明在地面上的影子长度记为
(单位:米),求
的表达式与最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com