精英家教网 > 高中数学 > 题目详情
15.函数f(x)=lnx-x在区间(0,e](e为自然对数的底)上的最大值为(  )
A.-1B.0C.1D.1-e

分析 利用导数研究函数f(x)在(0,e]上的单调性,由单调性即可求得最大值.

解答 解:f′(x)=$\frac{1}{x}$-1=$\frac{1-x}{x}$,
当x∈(0,1)时,f′(x)>0,
当x∈(1,e)时,f′(x)<0,
所以f(x)在(0,1)上递增,在(1,e)上递减,
故当x=1时f(x)取得极大值,也为最大值,f(1)=-1.
故选:A.

点评 本题考查利用导数研究函数在区间上的最值问题,属基础题,准确求导,熟练运算,是解决该类问题的基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数f(x)=sin($\frac{π}{6}$-x)sinx的最大值是$\frac{1}{2}-\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆的离心率e=$\frac{4}{5}$,一条准线的方程为y=-$\frac{25}{4}$,求此椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=ex-2ax-1.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若对任意正实数x,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数y=f(x)在点(1,0)处的切线方程;
(Ⅱ)设实数k使得f(x)<kx恒成立,求k的取值范围;
(Ⅲ)设g(x)=f(x)-kx(k∈R),求函数g(x)在区间$[\frac{1}{e},{e^2}]$上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,动点P到点A(-1,0)及点B(1,0)的距离之和为4,且直线l:y=kx+2与P点的轨迹C有两个不同的交点M,N.
(1)求k的取值范围;
(2)设轨迹C于y轴的负半轴交于点Q,求△MNQ的面积的最大值及对应的k值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lnx-$\frac{1}{2}$ax2-bx,
(1)当a=$\frac{1}{3}$,b=$\frac{2}{3}$时,求f(x)的最大值;
(2)令F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$(0<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤2恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线xcosθ+ysinθ=1与圆x2+y2=1的位置关系是(  )
A.相切B.相交C.相离D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:y2=-2px(p>0)上横坐标为-3的一点与其焦点的距离为4.
(1)求p的值;
(2)设动直线y=k(x+2)与抛物线C相交于A,B两点,问:在x轴上是否存在与k的取值无关的定点M,使得∠AMB被x轴平分?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案