精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为自然对数的底数.

(1)当时,证明:

(2)讨论函数极值点的个数.

【答案】(1)详见解析;(2)详见解析.

【解析】试题分析:(1)依题意,,故原不等式可化为对函数求导得出的单调性即可证明不等式成立;(2)对函数求导对函数记再求导然后对进行分类讨论判断出函数的单调性从而得出函数的极值点的个数.

试题解析:

(1)依题意,,故原不等式可化为,因为只要证.

,则.

时,单调递减;当时,单调递增.

,即,原不等式成立.

(2).

(ⅰ)当时,上单调递增,.

存在唯一,且当时,;当.

①若,即时,对任意,此时上单调递增,无极值点

②若,即时,此时当时,.上单调递增;当时,,即上单调递减;此时有一个极大值点和一个极小值点

③若,即时,此时当时,.上单调递增;当时,,即上单调递减:此时有一个极大值点和一个极小值点.

(ⅱ)当时,,所以,显然单调递减;在上单调递增;此时有一个极小值点,无极大值点.

(ⅲ)当时,由(1)可知,对任意,从而而对任意.

∴对任意.

此时令,得;令,得.

单调递减;在上单调递增;此时有一个极小值点,无极大值点.

(ⅳ)当时,由(1)可知,对任意,当且仅当时取等号.

此时令,得;令.

单调递减;在上单调递增;此时有一个极小值点,无极大值点.

综上可得:①当时,有两个极值点;

②当时,无极值点;

③当时,有一个极值点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数fx=1-x2ex

1)讨论fx)的单调性;

2)当x≥0时,fxax+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2018年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:

打算观看

不打算观看

女生

20

b

男生

c

25

1)求出表中数据bc;

2)判断是否有99%的把握认为观看2018年足球世界杯比赛与性别有关;

3)为了计算10人中选出9人参加比赛的情况有多少种,我们可以发现它与10人中选出1人不参加比赛的情况有多少种是一致的.现有问题:在打算观看2018年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.

P(K2≥k0)

0.10

0.05

0.025

0.01

0.005

K0

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,判断的单调性;

(Ⅱ)当时,恒有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的单调递减的奇函数,当时,.

(1)求的值;

(2)求的解析式;

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )

A. B. C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上6,这样就可得到一个新的实数,对实数仍按上述方法进行一次操作,又得到一个新的实数,当时,甲获胜,否则乙获胜,若甲胜的概率为,则的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基因编辑婴儿“露露”和“娜娜”出生的消息成了全球瞩目的焦点,为了解学生对基因编辑婴儿的看法,某中学随机从该校一年级学生中抽取了100人进行调查,抽取的45女生中赞成基因编辑婴儿的占,而55名男生中有10人表示赞成基因编辑婴儿.

(1)完成列联表,并回答能否有90%的把握认为“对基因编辑婴儿是否赞成与性别有关”?

(2)现从该校不赞成基因编辑婴儿的学生中,采用分层抽样的方法抽取7名学生,再从被抽取的7名学生中任取3人,记被抽取的3名学生女生的人数为,求的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:

(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;

(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数的分布列和数学期望.

查看答案和解析>>

同步练习册答案