【题目】设函数f(x)=(1-x2)ex.
(1)讨论f(x)的单调性;
(2)当x≥0时,f(x)≤ax+1,求a的取值范围.
【答案】(1)f(x)在(-∞,-1-),(-1+,+∞)上单调递减,在(-1-,-1+)上单调递增;(2)[1,+∞).
【解析】试题分析:(1)求导,令,求出极值点,利用导函数的符号,即可求出的单调性;(2)先化简,由,对分类讨论:①当时,构造新函数,再对求导,得的单调性,即可得的取值范围;②当时,构造新函数,得的单调性,再由试根法即可得出结论;③当时,利用试根法即可得出结论;然后得出的取值范围.
试题解析:(1)因为f(x)=(1-x2)ex,x∈R,
所以f′(x)=(1-2x-x2)ex,
令f′(x)=0可知x=-1±,
当x<-1-或x>-1+时f′(x)<0,当-1-<x<-1+时f′(x)>0,
所以f(x)在(-∞,-1-),(-1+,+∞)上单调递减,在(-1-,-1+)上单调递增;
(2)由题可知f(x)=(1-x)(1+x)ex.下面对a的范围进行讨论:
①当a≥1时,设函数h(x)=(1-x)ex,则h′(x)=-xex<0(x>0),
因此h(x)在[0,+∞)上单调递减,
又因为h(0)=1,所以h(x)≤1,
所以f(x)=(1-x)h(x)≤x+1≤ax+1;
②当0<a<1时,设函数g(x)=ex-x-1,则g′(x)=ex-1>0(x>0),
所以g(x)在[0,+∞)上单调递增,
又g(0)=1-0-1=0,
所以ex≥x+1.
因为当0<x<1时f(x)>(1-x)(1+x)2,
所以(1-x)(1+x)2-ax-1=x(1-a-x-x2),
取x0=∈(0,1),则(1-x0)(1+x0)2-ax0-1=0,
所以f(x0)>ax0+1,矛盾;
③当a≤0时,取x0=∈(0,1),则f(x0)>(1-x0)(1+x0)2=1≥ax0+1,矛盾;
综上所述,a的取值范围是[1,+∞).
科目:高中数学 来源: 题型:
【题目】将边长为的等边沿轴正方向滚动,某时刻与坐标原点重合(如图),设顶点的轨迹方程是,关于函数有下列说法:
(1)的值域为;
(2)是周期函数且周期为;
(3);
(4)滚动后,当顶点第一次落在轴上时,的图象与轴所围成的面积为
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱中, , , 是的中点,△是等腰三角形, 为的中点, 为上一点;
(1)若∥平面,求;
(2)平面将三棱柱分成两个部分,求含有点的那部分体积;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c分别为△ABC三个内角A,B,C所对的边长,且acosB+bcosA=2ccosC.
(1)求角C的值;
(2)若c=4,a+b=7,求S△ABC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(文)已知点D(1, )在双曲线C: =1(a>0,b>0)上,且双曲线的一条渐近线的方程是 x+y=0.
(1)求双曲线C的方程;
(2)若过点(0,1)且斜率为k的直线l与双曲线C有两个不同交点,求实数k的取值范围;
(3)设(2)中直线l与双曲线C交于A、B两个不同点,若以线段AB为直径的圆经过坐标原点,求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C1:x2+y2=4与圆C2:(x﹣1)2+(y﹣3)2=4,过动点P(a,b)分别作圆C1、圆C2的切线PM,PN,(M,N分别为切点),若|PM|=|PN|,则a2+b2﹣6a﹣4b+13的最小值是( )
A.5
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A(﹣ ,0),B( ,0),锐角α的终边与单位圆O交于点P. (Ⅰ)用α的三角函数表示点P的坐标;
(Ⅱ)当 =﹣ 时,求α的值;
(Ⅲ)在x轴上是否存在定点M,使得| |= | |恒成立?若存在,求出点M的横坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com